Show that the x coordinate of point Q in Fig. 1.6 is \sqrt{1-v^2}.
Considering a meterstick in the moving reference frame, which is represented by the segment of the line \overline{OR}; the point S sits at the intersection of two lines, x'=1 and t=0. In this case it is necessary to use the Lorentz transformation for the moving frame:
\begin{aligned} t & = \frac{t' + \frac{vx'}{c^2}}{\sqrt{1-\frac{v^2}{c^2}}} \\ x & = \frac{x' + vt'}{\sqrt{1-\frac{v^2}{c^2}}} \end{aligned}
t=0 means:
t = \frac{t' + \frac{vx'}{c^2}}{\sqrt{1-\frac{v^2}{c^2}}} = 0 \quad \Rightarrow \quad t' = -\frac{vx'}{c^2} Substituting this value in the second equation:
x = \frac{x' + vt'}{\sqrt{1-\frac{v^2}{c^2}}} = \frac{x' - \frac{v^2x'}{c^2}}{\sqrt{1-\frac{v^2}{c^2}}} = \frac{x'\left(1 - \frac{v^2}{c^2}\right)}{\sqrt{1-\frac{v^2}{c^2}}} = x' \sqrt{1-\frac{v^2}{c^2}}
Since for the point R there is the condition x' = 1:
x = \sqrt{1-\frac{v^2}{c^2}}
Or, in relativistic units:
x = \sqrt{1-v^2}
In Fig. 1.8, the traveling twin not only reverses direction but switches to a different reference frame when the reversal happens.
The exercise has been analyzed in details in a specific page here.
From the definition of (\Delta\tau)^2, verify Eq. 3.7.
Only 3 of the four component are independent; taking the definition of proper time:
(\mathrm d \tau)^2 = \left(\mathrm d X^0\right)^2 - \left[ \left(\mathrm d X^0\right)^2 + \left(\mathrm d X^1\right)^2 + \left(\mathrm d X^3\right)^2 \right]
and dividing by (\mathrm d\tau)^2:
\begin{aligned} &\left(\frac{\mathrm d \tau}{\mathrm d\tau}\right)^2 = \left(\frac{\mathrm d X^0}{\mathrm d\tau}\right)^2 - \left[ \left(\frac{\mathrm d X^0}{\mathrm d\tau}\right)^2 + \left(\frac{\mathrm d X^1}{\mathrm d\tau}\right)^2 + \left(\frac{\mathrm d X^3}{\mathrm d\tau}\right)^2 \right] \\ & 1 = \left (U^0 \right)^2 - \left[ \left (U^1 \right)^2 + \left (U^2 \right)^2 + \left (U^3 \right)^2 \right] \end{aligned}