Measuring Squeezed States Of Light

Squeezed States Measurements
Beating the quantum limit

Measuring Squeezed States of Light

Mach-Zehnder Interferometer

Vacuum in Channel One

Generic State in Channel One

Squeezed State in Channel One

Mach-Zehnder interferometer

Gravitational wave detection using optical interferometers is limited by laser shot noise. Squeezed light was theoretically proposed in the early 1980s to enhance interferometer sensitivity beyond this limit, potentially enabling gravitational wave detection with feasible instruments.

While gravitational wave detectors use more complex interferometers, the principle of sensitivity improvement with squeezed light can be understood using a Mach-Zehnder interferometer as a simpler example.

Mach-Zehnder interferometer

I have already explained how the interferometers works here, I will change the vacuum port from (2) to (1) to align with the description of the homodyne detection here.

Vacuum in channel one

In a Mach-Zehnder interferometer, a laser beam (quasi-classical state | \boldsymbol \alpha_\lambda \rangle) enters input channel (2), and vacuum enters input channel (1):

| \boldsymbol \Psi_{\text{in}} \rangle = | \mathbf 0 \rangle_1 \otimes | \boldsymbol \alpha_{\lambda} \rangle_2

This setup, resembling balanced homodyne detection, allows for calculating photon counts \mathbf N_{\lambda_5} and \mathbf N_{\lambda_6}. The average photon number in channel (2) is |\alpha_\lambda|^2:

\mathbf N_{\lambda_2} = \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle = \left| \alpha_\lambda \right|^2

It is possible to derive the operators \mathbf a_{\lambda_6} and \mathbf a_{\lambda_5}. We assume a balanced beam splitter (R = T = 0.5) and a minus sign for the amplitude reflection coefficient from mode (2) to (4) and from mode (3) to (5).

Let’s use the beam splitter matrix for the first beam splitter BS_1:

{BS}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}

and for the second beam splitter BS_2:

{BS}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}

The input modes are \mathbf a_{\lambda_1} and \mathbf a_{\lambda_2}. After the first beam splitter, the modes \mathbf b_1 and \mathbf b_2 are:

\begin{bmatrix} \mathbf b_1 \\ \mathbf b_2 \end{bmatrix} = {BS}_1 \begin{bmatrix} \mathbf a_{\lambda_1} \\ \mathbf a_{\lambda_2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \mathbf a_{\lambda_1} \\ \mathbf a_{\lambda_2} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf a_{\lambda_1} + \mathbf a_{\lambda_2} \\ \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2} \end{bmatrix}

So,

\begin{aligned} \mathbf b_1 & = \frac{1}{\sqrt{2}} (\mathbf a_{\lambda_1} + \mathbf a_{\lambda_2}) \\ \mathbf b_2 & = \frac{1}{\sqrt{2}} (\mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}) \end{aligned}

Let’s introduce phase shifts in paths 3 and 4. As the beam propagating through arm 3 of length L_3, it has an accumulated phase factor e^{ikL_3}. This phase factor arises from the wave nature of light. As a wave with wave number k propagates a distance L_3, its phase advances by kL_3, then the amplitude of the wave is multiplied by e^{ikL_3}. Similarly, e^{ikL_4} is the phase factor for arm 4 of length L_4.

\begin{aligned} \mathbf c_1 = e^{ikL_3} \mathbf b_1 & = \frac{1}{\sqrt{2}} e^{ikL_3} (\mathbf a_{\lambda_1} + \mathbf a_{\lambda_2}) \\ \mathbf c_2 = e^{ikL_4} \mathbf b_2 & = \frac{1}{\sqrt{2}} e^{ikL_4} (\mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}) \end{aligned}

After the second beam splitter, the output modes \mathbf a_{\lambda_6} and \mathbf a_{\lambda_5} are:

\begin{bmatrix} \mathbf a_{\lambda_6} \\ \mathbf a_{\lambda_5} \end{bmatrix} = {BS}_2 \begin{bmatrix} \mathbf c_1 \\ \mathbf c_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf c_1 \\ \mathbf c_2 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf c_1 + \mathbf c_2 \\ -\mathbf c_1 + \mathbf c_2 \end{bmatrix}

Therefore:

\begin{aligned} \mathbf a_{\lambda_6} & = \frac{1}{\sqrt{2}} (\mathbf c_1 + \mathbf c_2) = \frac{1}{2} \left[ e^{ikL_3} (\mathbf a_{\lambda_1} + \mathbf a_{\lambda_2}) + e^{ikL_4} (\mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}) \right] \\ \mathbf a_{\lambda_5} & = \frac{1}{\sqrt{2}} (-\mathbf c_1 + \mathbf c_2) = \frac{1}{2} \left[ -e^{ikL_3} (\mathbf a_{\lambda_1} + \mathbf a_{\lambda_2}) + e^{ikL_4} (\mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}) \right] \end{aligned}

Rearranging the terms:

\begin{aligned} \mathbf a_{\lambda_6} & = \frac{1}{2} \left[ (e^{ikL_3} + e^{ikL_4}) \mathbf a_{\lambda_1} + (e^{ikL_3} - e^{ikL_4}) \mathbf a_{\lambda_2} \right] \\ \mathbf a_{\lambda_5} & = \frac{1}{2} \left[ (-e^{ikL_3} + e^{ikL_4}) \mathbf a_{\lambda_1} + (-e^{ikL_3} - e^{ikL_4}) \mathbf a_{\lambda_2} \right] \end{aligned}

Factor out e^{ik(L_3+L_4)/2}:

\begin{aligned} \mathbf a_{\lambda_6} = & \frac{1}{2} e^{ik(L_3+L_4)/2} \left[ (e^{ik(L_3-L_4)/2} + e^{-ik(L_3-L_4)/2}) \mathbf a_{\lambda_1} \right. \\ & \left. + (e^{ik(L_3-L_4)/2} - e^{-ik(L_3-L_4)/2}) \mathbf a_{\lambda_2} \right] \\ \mathbf a_{\lambda_5} = & \frac{1}{2} e^{ik(L_3+L_4)/2} \left[ (-e^{ik(L_3-L_4)/2} + e^{-ik(L_3-L_4)/2}) \mathbf a_{\lambda_1} \right. \\ & \left. + (-e^{ik(L_3-L_4)/2} - e^{-ik(L_3-L_4)/2}) \mathbf a_{\lambda_2} \right] \end{aligned}

Using \cos(x) = \frac{e^{ix} + e^{-ix}}{2} and \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}:

\begin{aligned} \mathbf a_{\lambda_6} & = e^{ik(L_3+L_4)/2} \left[ \cos\left(\frac{k(L_3 - L_4)}{2}\right) \mathbf a_{\lambda_1} + i \sin\left(\frac{k(L_3 - L_4)}{2}\right) \mathbf a_{\lambda_2} \right] \\ \mathbf a_{\lambda_5} & = e^{ik(L_3+L_4)/2} \left[ -i \sin\left(\frac{k(L_3 - L_4)}{2}\right) \mathbf a_{\lambda_1} - \cos\left(\frac{k(L_3 - L_4)}{2}\right) \mathbf a_{\lambda_2} \right] \end{aligned}

Defining \delta:

\delta \equiv k\left(L_3 - L_4 \right) = 2\pi \frac{L_3 - L_4}{\lambda}

The formulas simplify to:

\begin{aligned} \mathbf a_{\lambda_6} & = e^{ik \frac{(L_3+L_4)}{2}} \left[ \mathbf a_{\lambda_1} \cos\left(\frac{\delta}{2}\right) + i\mathbf a_{\lambda_2} \sin\left(\frac{\delta}{2}\right) \right] \\ \mathbf a_{\lambda_5} & = e^{ik \frac{(L_3+L_4)}{2}} \left[ -i\mathbf a_{\lambda_1} \sin\left(\frac{\delta}{2}\right) - \mathbf a_{\lambda_2} \cos\left(\frac{\delta}{2}\right) \right] \end{aligned}

We can compute the expectation value of the operators \mathbf N_{\lambda_6} and \mathbf N_{\lambda_5} with respect to the input state |\boldsymbol \Psi_{\text{in}} \rangle = | \mathbf 0 \rangle_1 \otimes | \boldsymbol \alpha_{\lambda} \rangle_2.

Since input channel (1) is the vacuum (\langle \mathbf 0 | \mathbf a_{\lambda}^\dag = \mathbf a_{\lambda} | \mathbf 0 \rangle=0) and the input channel (2) is quasi-classical (\langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda}^\dag = \bar \alpha_{\lambda} \langle \boldsymbol \alpha_{\lambda} | and \mathbf a_\lambda | \boldsymbol \alpha_\lambda \rangle = \alpha_{\lambda} | \boldsymbol \alpha_\lambda \rangle), the following holds:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \boldsymbol \Psi_{\text{in}} \rangle & = {}_1 \langle \mathbf 0 | {}_2 \langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda} \rangle_2 = \langle \mathbf 0 | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \mathbf 0 \rangle \langle \boldsymbol \alpha_{\lambda} | \boldsymbol \alpha_{\lambda} \rangle = 0 \\ \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle & = {}_1 \langle \mathbf 0 | {}_2 \langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda} \rangle_2 = \langle \mathbf 0 | \mathbf 0 \rangle \langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda} \rangle = |\alpha_{\lambda}|^2 \\ \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle & = {}_1 \langle \mathbf 0 | {}_2 \langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda} \rangle_2 = \langle \mathbf 0 | \mathbf a_{\lambda_1}^\dag | \mathbf 0 \rangle \langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda} \rangle = 0 \times \alpha_{\lambda} = 0 \\ \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \boldsymbol \Psi_{\text{in}} \rangle & = {}_1 \langle \mathbf 0 | {}_2 \langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda} \rangle_2 = \langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda_2}^\dag | \boldsymbol \alpha_{\lambda} \rangle \langle \mathbf 0 | \mathbf a_{\lambda_1} | \mathbf 0 \rangle = \bar \alpha_{\lambda} \times 0 = 0 \end{aligned}

For \mathbf a_{\lambda_6}:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} | \boldsymbol \Psi_{\text{in}} \rangle = & \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_6}^\dag \mathbf a_{\lambda_6} | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \langle \boldsymbol \Psi_{\text{in}} | \left\{ e^{-ik \frac{(L_3+L_4)}{2}} \left[ \mathbf a_{\lambda_1}^\dag \cos\left(\frac{\delta}{2}\right) - i\mathbf a_{\lambda_2}^\dag \sin\left(\frac{\delta}{2}\right) \right] \right\} \\ & \cdot \left\{ e^{ik \frac{(L_3+L_4)}{2}} \left[ \mathbf a_{\lambda_1} \cos\left(\frac{\delta}{2}\right) + i\mathbf a_{\lambda_2} \sin\left(\frac{\delta}{2}\right) \right] \right\} | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \langle \boldsymbol \Psi_{\text{in}} | \left[ \mathbf a_{\lambda_1}^\dag \cos\left(\frac{\delta}{2}\right) - i\mathbf a_{\lambda_2}^\dag \sin\left(\frac{\delta}{2}\right) \right] \\ & \cdot \left[ \mathbf a_{\lambda_1} \cos\left(\frac{\delta}{2}\right) + i\mathbf a_{\lambda_2} \sin\left(\frac{\delta}{2}\right) \right] | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \langle \boldsymbol \Psi_{\text{in}} | \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \cos^2\left(\frac{\delta}{2}\right) + i \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \right. \\ & \left. - i \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \sin\left(\frac{\delta}{2}\right) \cos\left(\frac{\delta}{2}\right) + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \sin^2\left(\frac{\delta}{2}\right) \right] | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \cos^2\left(\frac{\delta}{2}\right) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \boldsymbol \Psi_{\text{in}} \rangle + \sin^2\left(\frac{\delta}{2}\right) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle \\ & + i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \langle \boldsymbol \Psi_{\text{in}} | \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} | \boldsymbol \Psi_{\text{in}} \rangle = \left| \alpha_{\lambda}\right|^2 \sin^2\left(\frac{\delta}{2}\right) \end{aligned}

Similarly for \mathbf N_{\lambda_5}:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = & \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_5}^\dag \mathbf a_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \langle \boldsymbol \Psi_{\text{in}} | \left\{ e^{-ik \frac{(L_3+L_4)}{2}} \left[ i\mathbf a_{\lambda_1}^\dag \sin\left(\frac{\delta}{2}\right) - \mathbf a_{\lambda_2}^\dag \cos\left(\frac{\delta}{2}\right) \right] \right\} \\ & \cdot \left\{ e^{ik \frac{(L_3+L_4)}{2}} \left[ -i\mathbf a_{\lambda_1} \sin\left(\frac{\delta}{2}\right) - \mathbf a_{\lambda_2} \cos\left(\frac{\delta}{2}\right) \right] \right\} | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \langle \boldsymbol \Psi_{\text{in}} | \left[ i\mathbf a_{\lambda_1}^\dag \sin\left(\frac{\delta}{2}\right) - \mathbf a_{\lambda_2}^\dag \cos\left(\frac{\delta}{2}\right) \right] \\ & \cdot \left[ -i\mathbf a_{\lambda_1} \sin\left(\frac{\delta}{2}\right) - \mathbf a_{\lambda_2} \cos\left(\frac{\delta}{2}\right) \right] | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \langle \boldsymbol \Psi_{\text{in}} | \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \sin^2\left(\frac{\delta}{2}\right) + i \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \sin\left(\frac{\delta}{2}\right) \cos\left(\frac{\delta}{2}\right) \right. \\ & \left. - i \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \cos^2\left(\frac{\delta}{2}\right) \right] | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \sin^2\left(\frac{\delta}{2}\right) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \boldsymbol \Psi_{\text{in}} \rangle + \cos^2\left(\frac{\delta}{2}\right) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle \\ & + i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \langle \boldsymbol \Psi_{\text{in}} | \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \left|\alpha_{\lambda}\right|^2 \cos^2\left(\frac{\delta}{2}\right) \end{aligned}

Therefore the number of photons are shows a sinusoidal variation as a function of the phase difference \delta, and it can be adjusted with a piezoelectric transducer action on mirror \mathbf M_3.

Mach-Zehnder interferometer dephasing

To measure small arm length variations, we can subtract the two output signals \mathbf N_6 - \mathbf N_5:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = & \langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} | \boldsymbol \Psi_{\text{in}} \rangle - \langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle \\ = & \left| \alpha_{\lambda}\right|^2 \sin^2\left(\frac{\delta}{2}\right) - \left| \alpha_{\lambda}\right|^2 \cos^2\left(\frac{\delta}{2}\right) \\ = & - \left| \alpha_{\lambda}\right|^2 \cos\left(\delta\right) \end{aligned}

Operating around a phase difference \delta = \pi/2 where the derivative is the maximum then gives the highest sensitivity:

\delta = k\left(L_3 - L_4 \right) = \frac{\pi}{2} + \varepsilon

Using the trigonometric identity \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b), we get:

\begin{aligned} \cos(\pi/2 + \varepsilon) & = \cos(\pi/2)\cos(\varepsilon) - \sin(\pi/2)\sin(\varepsilon) \\ & = 0 \cdot \cos(\varepsilon) - 1 \cdot \sin(\varepsilon) = -\sin(\varepsilon) \end{aligned}

Using the trigonometric identity \sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b), we get:

\begin{aligned} \sin(\pi/2 + \varepsilon) & = \sin(\pi/2)\cos(\varepsilon) + \cos(\pi/2)\sin(\varepsilon) \\ & = 1 \cdot \cos(\varepsilon) + 0 \cdot \sin(\varepsilon) = \cos(\varepsilon) \end{aligned}

The equation for the photon number difference becomes:

\langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = - \left| \alpha_{\lambda}\right|^2 (-\sin(\varepsilon)) = \left| \alpha_{\lambda}\right|^2 \sin(\varepsilon)

For small variations \varepsilon, we can approximate \sin(\varepsilon) \approx \varepsilon. So,

\langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle \approx \left| \alpha_{\lambda}\right|^2 \varepsilon = \mathbf N_{\lambda_2} \varepsilon

where \mathbf N_{\lambda_2} = |\alpha_\lambda|^2 is the average number of photons entering input channel (2).

While a large \mathbf N_{\lambda_2} appears to increase sensitivity, noise limits the measurement. Shot noise, arising from the photoelectric effect, causes fluctuations in \mathbf N_{\lambda_5} and N\mathbf N_{\lambda_6}.

In a semi-classical approach, since they are independent Poisson variables, the variance of their difference \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} is the sum of their variances, resulting in a noise level of \sqrt{\mathbf N_{\lambda_5} + \mathbf N_{\lambda_6}} = \sqrt{\mathbf N_{\lambda_2}}:

\Delta_{\mathbf N_{\lambda_6}-\mathbf N_{\lambda_5}} = \sqrt{\mathbf N_{\lambda_5} + \mathbf N_{\lambda_6}} = \sqrt{\mathbf N_{\lambda_2}} = \left| \alpha_\lambda \right|

and the signal to noise ratio:

\text{SNR} = \frac{\langle \mathbf N_{\lambda_5} - \mathbf N_{\lambda_6} \rangle}{\Delta_{\mathbf N_{\lambda_6}-\mathbf N_{\lambda_5}}} = \varepsilon \sqrt{\mathbf N_{\lambda_2}}

The signal-to-noise ratio (\text{SNR}) is \varepsilon \sqrt{\mathbf N_{\lambda_2}}, allowing detection of a dephasing \epsilon = 1/\varepsilon \sqrt{\mathbf N_{\lambda_2}} for \text{SNR} =1. Increasing photon number \mathbf N_{\lambda_2} improves sensitivity, but laser power cannot be increased indefinitely, and longer measurement times reduce detection bandwidth, hindering broadband signal detection, as the signal of interest could happen to a broad range of frequencies.

To overcome limitations of increasing laser power or measurement time for enhanced sensitivity, a quantum description of noise is necessary to understand how squeezed light improves performance.

Using the previously expression for \mathbf a_{\lambda_6} we can compute the expectation number of photon \mathbf N_{\lambda_6}:

\begin{aligned} \mathbf N_{\lambda_6} = & \mathbf a_{\lambda_6}^\dag\mathbf a_{\lambda_6} \\ = & \left(\mathbf a_{\lambda_1}^\dag \cos\left(\frac{\delta}{2}\right) - i\mathbf a_{\lambda_2}^\dag \sin\left(\frac{\delta}{2}\right) \right) \left(\mathbf a_{\lambda_1} \cos\left(\frac{\delta}{2}\right) + i\mathbf a_{\lambda_2} \sin\left(\frac{\delta}{2}\right) \right) \\ = & \cos^2\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \\ & - i \sin\left(\frac{\delta}{2}\right) \cos\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} + \sin^2\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \\ = & \cos^2\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \sin^2\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} + i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) \end{aligned}

Similarly, using the previously expression for \mathbf a_{\lambda_5} we can compute the expectation number of photon \mathbf N_{\lambda_5}:

\begin{aligned} \mathbf N_{\lambda_5} = & \mathbf a_{\lambda_5}^\dag\mathbf a_{\lambda_5} \\ = & \left( i\mathbf a_{\lambda_1}^\dag \sin\left(\frac{\delta}{2}\right) - \mathbf a_{\lambda_2}^\dag \cos\left(\frac{\delta}{2}\right) \right) \left( -i\mathbf a_{\lambda_1} \sin\left(\frac{\delta}{2}\right) - \mathbf a_{\lambda_2} \cos\left(\frac{\delta}{2}\right) \right) \\ = & \sin^2\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - i \sin\left(\frac{\delta}{2}\right) \cos\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} + \cos^2\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \\ = & \sin^2\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \cos^2\left(\frac{\delta}{2}\right) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} + i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \left( \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \right) \end{aligned}

Then the difference \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} can be expressed as:

\begin{aligned} \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} = & \left( \cos^2\left(\frac{\delta}{2}\right) - \sin^2\left(\frac{\delta}{2}\right) \right) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \left( \sin^2\left(\frac{\delta}{2}\right) - \cos^2\left(\frac{\delta}{2}\right) \right) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \\ & + i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) - i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \left( \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \right) \\ = & \cos(\delta) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \cos(\delta) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} + 2 i \cos\left(\frac{\delta}{2}\right) \sin\left(\frac{\delta}{2}\right) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) \\ = & \cos(\delta) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \sin(\delta) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) \end{aligned}

While input channel (1) is in a vacuum state, its inclusion (\mathbf a_{\lambda_1}) is important and highlights the non-trivial role of vacuum in quantum optical systems.

We can express this difference now as function of the dephasing \varepsilon with \delta = \pi/2 + \varepsilon:

\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} = -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right)

We can take the take its expectation when input channel (1) is empty and a quasi-classical state is injected in input channel (2):

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = & \langle \boldsymbol \Psi_{\text{in}} | -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) | \boldsymbol \Psi_{\text{in}} \rangle \\ = & -\sin(\varepsilon) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \boldsymbol \Psi_{\text{in}} \rangle + \sin(\varepsilon) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle \\ & + i \cos(\varepsilon) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle - i \cos(\varepsilon) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \boldsymbol \Psi_{\text{in}} \rangle \end{aligned}

For the first term:

-\sin(\varepsilon) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \boldsymbol \Psi_{\text{in}} \rangle = -\sin(\varepsilon) \langle \mathbf 0 |_1 \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda} \rangle_2 = -\sin(\varepsilon) \langle \mathbf 0 |_1 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \mathbf 0 \rangle_1 \langle \boldsymbol \alpha_{\lambda} |_2 | \boldsymbol \alpha_{\lambda} \rangle_2 = 0

because \mathbf a_{\lambda_1} | \mathbf 0 \rangle_1 = 0.

For the second term:

\sin(\varepsilon) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle = \sin(\varepsilon) \langle \mathbf 0 |_1 \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda} \rangle_2 = \sin(\varepsilon) \langle \mathbf 0 |_1 | \mathbf 0 \rangle_1 \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda} \rangle_2 = \sin(\varepsilon) |\alpha_{\lambda}|^2

because \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda} \rangle_2 = \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2}^\dag | \boldsymbol \alpha_{\lambda} \rangle_2 \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda} \rangle_2 = \bar \alpha_{\lambda} \alpha_{\lambda} = |\alpha_{\lambda}|^2.

For the third term:

i \cos(\varepsilon) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle = i \cos(\varepsilon) \langle \mathbf 0 |_1 \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda} \rangle_2 = i \cos(\varepsilon) \langle \mathbf 0 |_1 \mathbf a_{\lambda_1}^\dag | \mathbf 0 \rangle_1 \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda} \rangle_2 = 0

because \langle \mathbf 0 |_1 \mathbf a_{\lambda_1}^\dag = 0.

For the fourth term:

- i \cos(\varepsilon) \langle \boldsymbol \Psi_{\text{in}} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \boldsymbol \Psi_{\text{in}} \rangle = - i \cos(\varepsilon) \langle \mathbf 0 |_1 \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda} \rangle_2 = - i \cos(\varepsilon) \langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2}^\dag | \boldsymbol \alpha_{\lambda} \rangle_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_1} | \mathbf 0 \rangle_1 = 0

because \mathbf a_{\lambda_1} | \mathbf 0 \rangle_1 = 0.

Overall only one term is non-zero:

\langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = \sin(\varepsilon) |\alpha_{\lambda}|^2 = \sin(\varepsilon) \langle \mathbf N_{\lambda_2} \rangle

Which coincide with the result previously derived with a semi-classical approach. A quantum treatment reveals that noise originates from the interference of the laser input in input channel (2) with vacuum fluctuations in input channel (1). Unlike the classical view of noise as detector randomness, quantum noise is attributed to vacuum fluctuations entering the interferometer’s empty port. This understanding suggests that injecting a tailored quantum state into input channel (1) could lead to noise reduction and improved sensitivity.

In order to compute the standard deviation of the observable \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} we need to square it:

\begin{aligned} \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}\right)^2 = & \left[-\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right)\right]^2 \\ = & \sin^2(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right)^2 - \cos^2(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right)^2 \\ & - i \sin(\varepsilon) \cos(\varepsilon) \left[ \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) + \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) \right] \\ = & \sin^2(\varepsilon) \left[ (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1})^2 - 2 (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2}) + (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2})^2 \right] \\ & - \cos^2(\varepsilon) \left[ (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2})^2 - (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2}) (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1}) - (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1}) (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2}) + (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1})^2 \right] \\ & - i \sin(\varepsilon) \cos(\varepsilon) \left[ (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2}) - (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1}) - (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2}) (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2}) + (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2}) (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1}) \right. \\ & \left. + (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2}) (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) - (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2}) (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2}) - (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1}) (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) + (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1}) (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2}) \right] \\ = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & - \cos^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right] \\ & - i \sin(\varepsilon) \cos(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right. \\ & \left. + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \end{aligned}

In this formula many terms are in normal order with respect to \mathbf a_{\lambda_1} and will gives zero when applied to the vacuum and can remove them. It remains:

\begin{aligned} \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}\right)^2 = & \sin^2(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \\ & - \cos^2(\varepsilon) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \\ & + \cos^2(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \\ & + i \sin(\varepsilon) \cos(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \\ & + i \sin(\varepsilon) \cos(\varepsilon) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \end{aligned}

We can now compute the expectation:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & \langle \boldsymbol \Psi_{\text{in}} | \sin^2(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle \\ & - \langle \boldsymbol \Psi_{\text{in}} | \cos^2(\varepsilon) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle \\ & + \langle \boldsymbol \Psi_{\text{in}} | \cos^2(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle \\ & + \langle \boldsymbol \Psi_{\text{in}} | i \sin(\varepsilon) \cos(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle \\ & + \langle \boldsymbol \Psi_{\text{in}} | i \sin(\varepsilon) \cos(\varepsilon) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle \end{aligned}

Let us consider each term separately:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \sin^2(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle = & \sin^2(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda_2} \rangle_2 \langle \mathbf 0 |_1 | \mathbf 0 \rangle_1 \\ = & \sin^2(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} | (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2}) (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2}) | \boldsymbol \alpha_{\lambda_2} \rangle \\ = & \sin^2(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} | \mathbf N_{\lambda_2}^2 | \boldsymbol \alpha_{\lambda_2} \rangle \\ = & \sin^2(\varepsilon) |\alpha_{\lambda_2}|^4 \\ - \langle \boldsymbol \Psi_{\text{in}} | \cos^2(\varepsilon) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle = & - \cos^2(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda_2} \rangle_2 \\ = & - \cos^2(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \mathbf a_{\lambda_2} \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda_2} \rangle_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}^\dag | \mathbf 0 \rangle_1 \\ = & 0 \\ + \langle \boldsymbol \Psi_{\text{in}} | \cos^2(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle = & \cos^2(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda_2} \rangle_2 \\ = & \cos^2(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda_2} \rangle_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag | \mathbf 0 \rangle_1 \\ = & \cos^2(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} | \mathbf N_{\lambda_2} | \boldsymbol \alpha_{\lambda_2} \rangle \langle \mathbf 0 | (\mathbf I + \mathbf N_{\lambda_1}) | \mathbf 0 \rangle \\ = & \cos^2(\varepsilon) |\alpha_{\lambda_2}|^2 (1 + 0) \\ = & \cos^2(\varepsilon) |\alpha_{\lambda_2}|^2\\ + \langle \boldsymbol \Psi_{\text{in}} | i \sin(\varepsilon) \cos(\varepsilon) \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle = & i \sin(\varepsilon) \cos(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda_2} \rangle_2 \\ = & i \sin(\varepsilon) \cos(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda_2} \rangle_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_1}^\dag | \mathbf 0 \rangle_1 \\ = & 0\\ + \langle \boldsymbol \Psi_{\text{in}} | i \sin(\varepsilon) \cos(\varepsilon) \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \Psi_{\text{in}} \rangle = & i \sin(\varepsilon) \cos(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \mathbf 0 \rangle_1 | \boldsymbol \alpha_{\lambda_2} \rangle_2 \\ = & i \sin(\varepsilon) \cos(\varepsilon) \langle \boldsymbol \alpha_{\lambda_2} |_2 \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda_2} \rangle_2 \langle \mathbf 0 |_1 \mathbf a_{\lambda_1}^\dag | \mathbf 0 \rangle_1 \\ = & 0 \end{aligned}

Summing all terms:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & \sin^2(\varepsilon) |\alpha_{\lambda_2}|^4 + \cos^2(\varepsilon) |\alpha_{\lambda_2}|^2 \end{aligned}

Calculating the variance of \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} for \varepsilon = 0, it is equivalent to previous calculations for balanced homodyne detection, as a Mach-Zehnder interferometer at \varepsilon = 0 behaves like a balanced beam splitter:

\langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = \sin^2(0) |\alpha_{\lambda_2}|^4 + \cos^2(0) |\alpha_{\lambda_2}|^2 = |\alpha_{\lambda_2}|^2 = \mathbf N_{\lambda_2}

Which is the same as the classical result. This a quantum calculation reveals that signal fluctuations originate from the interference of the laser input (channel (2)) with vacuum fluctuations entering input channel (1). This contrasts with a semi-classical view of noise as detector randomness, instead identifying vacuum fluctuations as the noise source. This quantum understanding suggests that modifying the input channel (1) could potentially improve the signal-to-noise ratio.

Generic state in channel one

We consider now the case where the state in input channel (1) could be any state | \boldsymbol \psi \rangle_1 but we have a quasi-classical state | \boldsymbol \alpha_\lambda \rangle_2 in input channel (2), with \alpha_\lambda \in \mathbb R (^{}\langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda}^\dag = \alpha_{\lambda} \langle \boldsymbol \alpha_{\lambda} | and \mathbf a_\lambda | \boldsymbol \alpha_\lambda \rangle = \alpha_{\lambda} | \boldsymbol \alpha_\lambda \rangle), so that the computation will be slightly simpler.

\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} = -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right)

We first compute the expectation for the state in input channel (2):

\begin{aligned} {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}| \boldsymbol \alpha_\lambda \rangle_2 = & {}_2 \langle \boldsymbol \alpha_\lambda | \left[ -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) \right]| \boldsymbol \alpha_\lambda \rangle_2 \\ = & -\sin(\varepsilon) \left( {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \boldsymbol \alpha_\lambda \rangle_2 - {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 \right) \\ & + i \cos(\varepsilon) \left( {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 - {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \boldsymbol \alpha_\lambda \rangle_2 \right) \\ = & -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \alpha_{\lambda_2}^2 \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \alpha_{\lambda_2} \mathbf a_{\lambda_1} \right) \end{aligned}

For the particular case \varepsilon = 0, we obtain:

{}_2 \langle \boldsymbol \alpha_\lambda | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}| \boldsymbol \alpha_\lambda \rangle_2 = i \alpha_{\lambda_2} \left( \mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1} \right) =\alpha_{\lambda_2} \sqrt{\frac{2}{\hbar}} \mathbf P_{\lambda_1}

using:

\mathbf P_{\lambda_1} = \sqrt{\frac{\hbar}{2}}i (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1})

It is the result that corresponds to measuring the \mathbf P quadrature of the input state in input channel (1), a result that is consistent with what is expected from a balanced beam splitter measurement:

\langle \boldsymbol \Psi_{\text{in}} | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}| \boldsymbol \Psi_{\text{in}} \rangle = \alpha_{\lambda_2} \sqrt{\frac{2}{\hbar}} {}_1 \langle \boldsymbol \psi | \mathbf P_{\lambda_1}| \boldsymbol \psi \rangle_1

We want now to compute the expectation of the squared balanced signal:

\begin{aligned} \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}\right)^2 = & \left[-\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) \right]^2\\ = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & - \cos^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right] \\ & - i \sin(\varepsilon) \cos(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right. \\ & \left. + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \end{aligned}

We then again first compute the expectation for the state in input (2):

\begin{aligned} {}_2 \langle \boldsymbol \alpha_\lambda | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \alpha_\lambda \rangle_2 = & {}_2 \langle \boldsymbol \alpha_\lambda | \left[ \right.\sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & - \cos^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right] \\ & - i \sin(\varepsilon) \cos(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right. \\ & \left. + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \left. \right] | \boldsymbol \alpha_\lambda \rangle_2 \end{aligned}

We compute the terms separately. The first term is:

\begin{aligned} & {}_2 \langle \boldsymbol \alpha_\lambda | \left[ \right.\sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \left. \right] | \boldsymbol \alpha_\lambda \rangle_2 \\ = & \sin^2(\varepsilon) \left[ {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} | \boldsymbol \alpha_\lambda \rangle_2 - 2 {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 + {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 \right] \\ = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} {}_2 \langle \boldsymbol \alpha_\lambda | 1 | \boldsymbol \alpha_\lambda \rangle_2 - 2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 + {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 \right] \\ = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \alpha_{\lambda_2}^2 + {}_2 \langle \boldsymbol \alpha_\lambda | (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2})^2 | \boldsymbol \alpha_\lambda \rangle_2 \right] \\ = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \end{aligned}

The second term is:

\begin{aligned} & - \cos^2(\varepsilon) {}_2 \langle \boldsymbol \alpha_\lambda | \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right] | \boldsymbol \alpha_\lambda \rangle_2 \\ = & - \cos^2(\varepsilon) \left[ {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 - {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \boldsymbol \alpha_\lambda \rangle_2 \right. \\ & \left. - {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 + {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \boldsymbol \alpha_\lambda \rangle_2 \right] \\ = & - \cos^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}^\dag {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2} \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag | \boldsymbol \alpha_\lambda \rangle_2 \right. \\ & \left. - \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 + \mathbf a_{\lambda_1} \mathbf a_{\lambda_1} {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2}^\dag | \boldsymbol \alpha_\lambda \rangle_2 \right] \\ = & - \cos^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2}^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag | \boldsymbol \alpha_\lambda \rangle_2 - \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2}^2 + \mathbf a_{\lambda_1} \mathbf a_{\lambda_1} \alpha_{\lambda_2}^2 \right] \\ = & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} {}_2 \langle \boldsymbol \alpha_\lambda | (\mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} + 1) | \boldsymbol \alpha_\lambda \rangle_2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ = & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \end{aligned}

The third term is:

\begin{aligned} & - 2 i \sin(\varepsilon) \cos(\varepsilon) {}_2 \langle \boldsymbol \alpha_\lambda | \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) | \boldsymbol \alpha_\lambda \rangle_2 \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) {}_2 \langle \boldsymbol \alpha_\lambda | \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} + \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right] | \boldsymbol \alpha_\lambda \rangle_2 \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \left[ {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 - {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \boldsymbol \alpha_\lambda \rangle_2 \right. \\ & \left. - {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 + {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} | \boldsymbol \alpha_\lambda \rangle_2 \right] \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1} {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag | \boldsymbol \alpha_\lambda \rangle_2 \right. \\ & \left. - \mathbf a_{\lambda_1}^\dag {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2} | \boldsymbol \alpha_\lambda \rangle_2 + \mathbf a_{\lambda_1} {}_2 \langle \boldsymbol \alpha_\lambda | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \mathbf a_{\lambda_2}^\dag | \boldsymbol \alpha_\lambda \rangle_2 \right] \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1} \alpha_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2}^3 + \mathbf a_{\lambda_1} \alpha_{\lambda_2}^3 \right] \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1} - \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag + \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1} \right] \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \end{aligned}

Overall then:

\begin{aligned} {}_2 \langle \boldsymbol \alpha_\lambda | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \alpha_\lambda \rangle_2 = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \end{aligned}

The square of the expectation value is:

\begin{aligned} \left({}_2 \langle \boldsymbol \alpha_\lambda | \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}| \boldsymbol \alpha_\lambda \rangle_2\right)^2 = &\left[ -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \alpha_{\lambda_2}^2 \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \alpha_{\lambda_2} \mathbf a_{\lambda_1} \right)\right]^2 \\ = & \sin^2(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \alpha_{\lambda_2}^2 \right)^2 - \cos^2(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \alpha_{\lambda_2} \mathbf a_{\lambda_1} \right)^2 \\ & - 2i \sin(\varepsilon) \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \alpha_{\lambda_2}^2 \right) \left( \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \alpha_{\lambda_2} \mathbf a_{\lambda_1} \right) \\ = & \sin^2(\varepsilon) \left[ (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1})^2 - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \alpha_{\lambda_2}^4 \right] \\ & - \cos^2(\varepsilon) \left[ (\mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2})^2 - 2 (\mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2}) (\alpha_{\lambda_2} \mathbf a_{\lambda_1}) + (\alpha_{\lambda_2} \mathbf a_{\lambda_1})^2 \right] \\ & - 2i \sin(\varepsilon) \cos(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \alpha_{\lambda_2} \mathbf a_{\lambda_1}) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \alpha_{\lambda_2} \mathbf a_{\lambda_1}) \right] \\ = & \sin^2(\varepsilon) \left[ (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1})^2 - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \alpha_{\lambda_2}^4 \right] \\ & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2i \sin(\varepsilon) \cos(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \alpha_{\lambda_2} \mathbf a_{\lambda_1} - \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} + \alpha_{\lambda_2}^3 \mathbf a_{\lambda_1} \right] \end{aligned}

Subtracting:

\begin{aligned} \Delta^2_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}} & = \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \\ & - \sin^2(\varepsilon) \left[ (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1})^2 - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \alpha_{\lambda_2}^4 \right] \\ & + \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & + 2i \sin(\varepsilon) \cos(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \alpha_{\lambda_2} \mathbf a_{\lambda_1} - \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} + \alpha_{\lambda_2}^3 \mathbf a_{\lambda_1} \right] \\ & = \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1})^2 + \alpha_{\lambda_2}^2 \right] \\ & \cos^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \right] \\ & + 2i \sin(\varepsilon) \cos(\varepsilon) \left[ \alpha_{\lambda_2} \left[ \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1} \right] \right. \\ & + \left. \alpha_{\lambda_2}^3 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) - \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \alpha_{\lambda_2} + \alpha_{\lambda_2}^3 \mathbf a_{\lambda_1} \right] \end{aligned}

Let’s consider again the case \varepsilon = 0 for a generic |\boldsymbol \Psi_{\text{in}} \rangle:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle & = {}_1\langle \mathbf 0 | -\left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] | \mathbf 0 \rangle_1\\ & - {}_1\langle \mathbf 0 |\left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right]\mathbf 0 \rangle_1 \end{aligned}

We already evaluated the second term to be \alpha_{\lambda_2} \sqrt{\frac{2}{\hbar}} \mathbf P_{\lambda_1}:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2| \boldsymbol \Psi_{\text{in}} \rangle & = {}_1\langle \mathbf 0 | -\left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \mathbf 0 \rangle_1\\ & - \alpha_{\lambda_2}^2 \frac{2}{\hbar} \left(\langle \mathbf P_{\lambda_1} \rangle\right)^2 \end{aligned}

If the laser beam in in input channel (2) is intense, then \alpha_{\lambda_2}^2 \gg 1 and therefore (\alpha_{\lambda_2}^2 + 1) \approx \alpha_{\lambda_2}^2:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & \alpha_{\lambda_2}^2 \langle {}_1\langle \mathbf 0 | -\left[ (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag + (\mathbf a_{\lambda_1})^2 \right] |\mathbf 0 \rangle_1\\ & - \alpha_{\lambda_2}^2 \frac{2}{\hbar} \left(\langle \mathbf P_{\lambda_1} \rangle\right)^2 \\ = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0 | \left( i (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1})\right)^2 |\mathbf 0 \rangle_1 - \alpha_{\lambda_2}^2 \frac{2}{\hbar} \left(\langle \mathbf P_{\lambda_1} \rangle\right)^2 \\ = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0 | \left( \sqrt{\frac{2}{\hbar}} \mathbf P_{\lambda_1} \right)^2 |\mathbf 0 \rangle_1 - \frac{2}{\hbar} \alpha_{\lambda_2}^2 \left(\langle \mathbf P_{\lambda_1} \rangle\right)^2 \\ = & \alpha_{\lambda_2}^2 \frac{2}{\hbar} \langle \mathbf P_{\lambda_1}^2 \rangle - \alpha_{\lambda_2}^2 \frac{2}{\hbar} \left(\langle \mathbf P_{\lambda_1} \rangle\right)^2 \\ = & \alpha_{\lambda_2}^2 \frac{2}{\hbar} \left[ \langle \mathbf P_{\lambda_1}^2 \rangle - \left(\langle \mathbf P_{\lambda_1} \rangle\right)^2\rangle\right] \end{aligned}

Returning to the case a balanced Mach-Zehnder interferometer with a quasi-classical state in input channel (2) (with \alpha_\lambda \in \mathbb R), measuring the difference signal effectively measures the \mathbf P_{\lambda_1} quadrature of input channel (1) field.

Repeating this measurement allows determining the average and dispersion of that quadrature for the input state in channel one. Consequently, the measurement of \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} can be understood as measuring the \mathbf P_{\lambda_1}quadrature of vacuum, scaled by a factor, when the input channel (1) is | \mathbf 0 \rangle:

\begin{aligned} & \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = \alpha_{\lambda_2}^2 \frac{2}{\hbar} \langle \mathbf 0 | \mathbf P_{\lambda_1}^2 | \mathbf 0 \rangle \\ & \langle \boldsymbol \Psi_{\text{in}} | \Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}} | \boldsymbol \Psi_{\text{in}} \rangle = \alpha_{\lambda_2}^2 \sqrt{\frac{2}{\hbar}} \langle \mathbf 0 | \mathbf P_{\lambda_1} | \mathbf 0 \rangle = 0 \end{aligned}

We can show it in the complex plane representation of the quadratures of the vacuum.

Phasor plane representation of vacuum quadratures

Squeezed state in channel one

In the complex plane representation of vacuum quadratures, the result suggests a method to reduce quantum noise in balanced interferometers, using squeezed light. Specifically, \mathbf P_{\lambda}-squeezed states with negative R_\lambda can reduce fluctuations. This representation depicts a special case, \mathbf P_{\lambda}-squeezed vacuum.

Phasor plane representation of \mathbf P_{\lambda}-squeezed vacuum quadratures

Introducing \mathbf P_{\lambda}-squeezed vacuum at input channel (1) we could reduce phase measurement fluctuations below the standard quantum noise limit.

We can define the squeezed vacuum as:

\mathbf{A}_{R_\lambda} | \boldsymbol \alpha_\lambda, R_\lambda \rangle = \alpha_{\lambda R} | \boldsymbol \alpha_\lambda, R_\lambda \rangle, \quad \alpha_{\lambda R} = 0

We indicate it as | \mathbf 0, R_\lambda \rangle and as a consequence:

\alpha_\lambda^\prime = \alpha_{\lambda R}\left[\cosh \left(R_\lambda\right) - \sinh \left(R_\lambda\right) \right] = 0

Therefore the expectation of the electric field, as well the expectation of the quadratures, are null:

\begin{aligned} & \langle \mathbf 0, R_\lambda | \mathbf{E}_{\lambda}(\mathbf r,0) | \mathbf 0, R_\lambda \rangle = 0 \\ & \langle \mathbf 0, R_\lambda | \mathbf{Q}_{\lambda} | \mathbf 0, R_\lambda \rangle = 0 \\ & \langle \mathbf 0, R_\lambda | \mathbf{P}_{\lambda} | \mathbf 0, R_\lambda \rangle = 0 \end{aligned}

We express \mathbf P_{\lambda} as function of \mathbf{A}_{R_\lambda} and \mathbf{A}_{R_\lambda}^\dag:

\begin{aligned} \mathbf P_{\lambda} = & -i\sqrt{\frac{\hbar}{2}}\left( \mathbf a_\lambda - \mathbf a_\lambda ^\dag \right) = -i\sqrt{\frac{\hbar}{2}}e^{R_\lambda}\left( \mathbf{A}_{R_\lambda} - \mathbf{A}_{R_\lambda} ^\dag \right) \end{aligned}

We can then calculate the variance which is the expectation of \mathbf P_{\lambda}^2:

\begin{aligned} \langle \mathbf 0, R_\lambda | \mathbf P_{\lambda}^2 | \mathbf 0, R_\lambda \rangle = & \langle \mathbf 0, R_\lambda | \left[ -i\sqrt{\frac{\hbar}{2}}e^{R_\lambda}\left( \mathbf{A}_{R_\lambda} - \mathbf{A}_{R_\lambda} ^\dag \right) \right]^2 | \mathbf 0, R_\lambda \rangle\\ = & \langle \mathbf 0, R_\lambda |-\frac{\hbar}{2}e^{2R_\lambda} \left( \mathbf{A}_{R_\lambda} - \mathbf{A}_{R_\lambda} ^\dag \right)^2 | \mathbf 0, R_\lambda \rangle\\ = & \langle \mathbf 0, R_\lambda |-\frac{\hbar}{2}e^{2R_\lambda} \left( \mathbf{A}_{R_\lambda}^2 + \mathbf{A}_{R_\lambda}^{\dag 2} - \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag - \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} \right) | \mathbf 0, R_\lambda \rangle\\ = & -\frac{\hbar}{2}e^{2R_\lambda} \left[ 0 + 0 - 1 - 0 \right] \\ = & \frac{\hbar}{2}e^{2R_\lambda} \end{aligned}

Using \mathbf{A}_{R_\lambda} | \mathbf 0, R_\lambda \rangle = 0 and \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^\dag = 0 and the commutator relation \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag = 1 + \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda}.

If R_\lambda < 0, the the fluctuations of \mathbf P_{\lambda} are below the standard quantum limit.

Squeezed vacuum, unlike ordinary vacuum, exhibits a non-zero average photon number despite having a zero average field and a minimal product of quadrature standard deviations:

\Delta Q_\lambda \Delta P_\lambda = \frac{\hbar}{2}

We express \mathbf N_{\lambda} as function of \mathbf{A}_{R_\lambda} and \mathbf{A}_{R_\lambda}^\dag:

\begin{aligned} \mathbf N_{\lambda} = & \mathbf a_\lambda^\dag \mathbf a_\lambda \\ =& \left( \mathbf{A}_{R_\lambda}^\dag \cosh(R_\lambda) - \mathbf{A}_{R_\lambda} \sinh(R_\lambda) \right) \left( \mathbf{A}_{R_\lambda} \cosh(R_\lambda) - \mathbf{A}_{R_\lambda}^\dag \sinh(R_\lambda) \right) \\ =& \cosh^2(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} - \cosh(R_\lambda)\sinh(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda}^\dag \\ & - \sinh(R_\lambda)\cosh(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda} + \sinh^2(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag \\ =& \cosh^2(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} + \sinh^2(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag \\ & - \sinh(R_\lambda)\cosh(R_\lambda) \left( \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda}^\dag + \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda} \right) \\ =& \cosh^2(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} + \sinh^2(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag - \\ & \sinh(R_\lambda)\cosh(R_\lambda) \left( \mathbf{A}_{R_\lambda}^{\dag 2} + \mathbf{A}_{R_\lambda}^2 \right) \end{aligned}

We can then calculate the expectation:

\begin{aligned} \langle \mathbf 0, R_\lambda | \mathbf N_{\lambda} | \mathbf 0, R_\lambda \rangle = & \langle \mathbf 0, R_\lambda | \left[ \cosh^2(R_\lambda) \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} + \sinh^2(R_\lambda) \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag - \right.\\ & \left. \sinh(R_\lambda)\cosh(R_\lambda) \left( \mathbf{A}_{R_\lambda}^{\dag 2} + \mathbf{A}_{R_\lambda}^2 \right) \right] | \mathbf 0, R_\lambda \rangle\\ = & \cosh^2(R_\lambda) \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} | \mathbf 0, R_\lambda \rangle + \sinh^2(R_\lambda) \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda} \mathbf{A}_{R_\lambda}^\dag | \mathbf 0, R_\lambda \rangle - \\ & \sinh(R_\lambda)\cosh(R_\lambda) \left( \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^{\dag 2} | \mathbf 0, R_\lambda \rangle + \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^2 | \mathbf 0, R_\lambda \rangle \right) \\ = & \cosh^2(R_\lambda) \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda} | \mathbf 0, R_\lambda \rangle + \sinh^2(R_\lambda) \langle \mathbf 0, R_\lambda | (1 + \mathbf{A}_{R_\lambda}^\dag \mathbf{A}_{R_\lambda}) | \mathbf 0, R_\lambda \rangle - \\ & \sinh(R_\lambda)\cosh(R_\lambda) \left( \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^{\dag 2} | \mathbf 0, R_\lambda \rangle + \langle \mathbf 0, R_\lambda | \mathbf{A}_{R_\lambda}^2 | \mathbf 0, R_\lambda \rangle \right) \\ = & \cosh^2(R_\lambda) \times 0 + \sinh^2(R_\lambda) \times \left (1 + 0 \right) - \sinh(R_\lambda)\cosh(R_\lambda) \left( 0 + 0 \right) \\ = & \sinh^2(R_\lambda) \end{aligned}

The average number of photons is equal to \sinh^2(R_\lambda) small but non-null photon number is detectable with sensitive photoelectric detectors.

Mach-Zehnder interferometer with squeezed vacuum

We can again consider a Mach-Zehnder interferometer where the state in input channel (1) is a squeezed vacuum | \mathbf 0, R_\lambda \rangle and we have the same quasi-classical state | \boldsymbol \alpha_\lambda \rangle_2 in input channel (2), with \alpha_\lambda \in \mathbb R (^{}\langle \boldsymbol \alpha_{\lambda} | \mathbf a_{\lambda}^\dag = \alpha_{\lambda} \langle \boldsymbol \alpha_{\lambda} | and \mathbf a_\lambda | \boldsymbol \alpha_\lambda \rangle = \alpha_{\lambda} | \boldsymbol \alpha_\lambda \rangle):

| \boldsymbol \Psi_{\text{in}} \rangle = | \mathbf 0, R_\lambda \rangle_1 \otimes | \boldsymbol \alpha_{\lambda} \rangle_2

The difference between the two output signals \mathbf N_6 - \mathbf N_5 for a \delta:

\delta = k\left(L_3 - L_4 \right) = \frac{\pi}{2} + \varepsilon

around the dephasing variation \varepsilon was previously calculated:

\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} = -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right)

We can express \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} replacing \mathbf a_{\lambda_1}^\dag and \mathbf a_{\lambda_1} as function of \mathbf{A}_{R_{\lambda_1}}, \mathbf{A}_{R_{\lambda_1}}^\dag since input channel (1) is a squeezed state, while \mathbf a_{\lambda_2}^\dag and \mathbf a_{\lambda_2} are unchanged since input channel (2) is semi-classical state:

\begin{aligned} \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} = & -\sin(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right) + i \cos(\varepsilon) \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_2} - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_1} \right) \\ = & -\sin(\varepsilon) \left[ \left[ \mathbf{A}_{R_{\lambda_1}}^\dag \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}} \sinh(R_{\lambda_1}) \right] \right. \\ & \cdot \left.\left[ \mathbf{A}_{R_{\lambda_1}} \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}}^\dag \sinh(R_{\lambda_1}) \right] - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & + i \cos(\varepsilon) \left[ \left[ \mathbf{A}_{R_{\lambda_1}}^\dag \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}} \sinh(R_{\lambda_1}) \right] \mathbf a_{\lambda_2} \right. \\ & \left .- \mathbf a_{\lambda_2}^\dag \left[ \mathbf{A}_{R_{\lambda_1}} \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}}^\dag \sinh(R_{\lambda_1}) \right] \right] \\ = & -\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag + \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \right) - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf a_{\lambda_2} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf a_{\lambda_2} \right. \\ & \left. - \cosh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right] \end{aligned}

We can then calculate the expectation:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = & {}_1\langle \mathbf 0, R_{\lambda_1} | -\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag + \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \right) - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \\ & + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf a_{\lambda_2} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf a_{\lambda_2} \right. \\ & \left. - \cosh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right] | {}_1\mathbf 0, R_\lambda \rangle_1\\ = & -\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_\lambda \rangle_1 +\right. \\ & \left. \sinh^2(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_\lambda \rangle_1 \right. \\ & \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag | \boldsymbol \Psi_{\text{in}} \rangle \right. \right. \\ & + \left. \left. {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_\lambda \rangle_1 \right) \right. \\ & \left.- {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \mathbf 0, R_\lambda \rangle_1 \right] \\ & + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf a_{\lambda_2} | \mathbf 0, R_\lambda \rangle_1 \right. \\ & \left.- \sinh(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf a_{\lambda_2} | \mathbf 0, R_\lambda \rangle_1 \right. \\ & \left. - \cosh(R_{\lambda_1}){}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_\lambda \rangle_1 \right. \\ & \left.+ \sinh(R_{\lambda_1}) {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_\lambda \rangle_1 \right] \\ = & -\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) \times 0 + \sinh^2(R_{\lambda_1}) \times 1\right. \\ & \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( 0 + 0 \right) - \alpha_\lambda^2 \right] \\ & + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) \times 0 - \sinh(R_{\lambda_1}) \times 0\right. \\ & \left. - \cosh(R_{\lambda_1}) \times 0 + \sinh(R_{\lambda_1}) \times 0 \right] \\ = & \sin(\varepsilon) \left[ \alpha_\lambda^2 - \sinh^2(R_{\lambda_1}) \right] \end{aligned}

The only two terms which are contributing are {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_\lambda \rangle_1 and -{}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \mathbf 0, R_\lambda \rangle_1, all the other gives 0 (the sign are then reversed by -\sin(\varepsilon)).

For the squeezed Vacuum Term the term \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag is not in normal order with respect to the operators \mathbf{A}_{R_{\lambda_1}} and \mathbf{A}_{R_{\lambda_1}}^\dag. Normal ordering would require all annihilation operators to be on the right of all creation operators. Here, the annihilation operator \mathbf{A}_{R_{\lambda_1}} is on the left of the creation operator \mathbf{A}_{R_{\lambda_1}}^\dag.

Because it’s not in normal order, when we evaluate its expectation value with respect to the squeezed vacuum state | \mathbf 0, R_{\lambda_1} \rangle, we use the commutator relation [\mathbf{A}_{R_{\lambda_1}}, \mathbf{A}_{R_{\lambda_1}}^\dag] = 1 to rewrite \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag = 1 + \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}. This leads to:

\begin{aligned} {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 = & {}_1\langle \mathbf 0, R_{\lambda_1} | (1 + \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}) | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & 1 + {}_1\langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 = 1 + 0 = 1 \end{aligned}

For the coherent state term the term \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} is in normal order with respect to the operators \mathbf a_{\lambda_2} and \mathbf a_{\lambda_2}^\dag. The creation operator \mathbf a_{\lambda_2}^\dag is on the left of the annihilation operator \mathbf a_{\lambda_2}.

For a coherent state | \boldsymbol \alpha_{\lambda} \rangle_2, the expectation value of the normally ordered number operator \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} directly gives the average number of photons, which is the square of the amplitude \alpha_\lambda^2:

\langle \boldsymbol \alpha_{\lambda} |_2 \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} | \boldsymbol \alpha_{\lambda} \rangle_2 = |\alpha_\lambda|^2 = \alpha_\lambda^2

This term represents the contribution from the semi-classical coherent state, where the photon number is determined by the amplitude of the classical field.

So the expectation of \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} is:

\langle \boldsymbol \Psi_{\text{in}} |\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = \sin(\varepsilon) \left[ \alpha_\lambda^2 - \sinh^2(R_{\lambda_1}) \right] \approx \alpha_{\lambda}^2 \varepsilon = \varepsilon \langle \mathbf N_{\lambda_2} \rangle

as small variations \varepsilon, we can approximate \sin(\varepsilon) \approx \varepsilon and the number of photons of the squeezed vacuum is negligible compared to \alpha_\lambda^2. So the results is again the average number of photons entering input channel (2).

If we wanted to compute the expectation of the squared balanced signal:

\begin{aligned} \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}\right)^2 = & \left\{-\sin(\varepsilon) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right.\right. \\ & \left. \left. - \sinh(R_{\lambda_1})\cosh(R_{\lambda_1}) \left( \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag + \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \right) - \mathbf a_{\lambda_2}^\dag \mathbf a_{\lambda_2} \right] \right.\\ & \left. + i \cos(\varepsilon) \left[ \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf a_{\lambda_2} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf a_{\lambda_2} \right.\right. \\ & \left. \left. - \cosh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh(R_{\lambda_1}) \mathbf a_{\lambda_2}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right] \right\}^2 \end{aligned}

It would require the computation of a long expression in one step. To split in three parts, we can use We have already computed for a generic state in input channel (1), and we can use that result:

\begin{aligned} {}_2 \langle \boldsymbol \alpha_\lambda | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \alpha_\lambda \rangle_2 = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \\ = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \end{aligned}

We can now express \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} replacing \mathbf a_{\lambda_1}^\dag and \mathbf a_{\lambda_1} as function of \mathbf{A}_{R_{\lambda_1}}, \mathbf{A}_{R_{\lambda_1}}^\dag since input channel (1) is a squeezed state.

We start with the term with \sin^2(\varepsilon):

\sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right]

We compute \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}:

\begin{aligned} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} & = \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \right) \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \right) \\ = & \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \right) \\ & - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \right) \\ = & \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \\ & - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \end{aligned}

We compute \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} = (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1}) = (\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1})^2:

\begin{aligned} \left( \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \right)^2 = & \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \end{aligned}

Putting it all together:

\begin{aligned} & \sin^2(\varepsilon) \left[ \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \\ & \left. - 2 \alpha_{\lambda_2}^2 \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left.\left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \end{aligned}

Now we compute the term with \cos^2(\varepsilon):

\cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right]

We compute (\mathbf a_{\lambda_1}^\dag)^2:

\begin{aligned} (\mathbf a_{\lambda_1}^\dag)^2 & = \left( \mathbf{A}_{R_{\lambda_1}}^\dag \cosh \left(R_{\lambda_1}\right) - \mathbf{A}_{R_{\lambda_1}}\sinh \left(R_{\lambda_1}\right) \right)^2 \\ & = \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \end{aligned}

\mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} was previously computed.

We compute \mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag:

\begin{aligned} \mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag = & \left( \mathbf{A}_{R_{\lambda_1}} \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}}^\dag \sinh(R_{\lambda_1}) \right) \left( \mathbf{A}_{R_{\lambda_1}}^\dag \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}} \sinh(R_{\lambda_1}) \right)^\dag \\ = & \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \\ & - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \end{aligned}

We compute \mathbf a_{\lambda_1}^2:

\begin{aligned} (\mathbf a_{\lambda_1})^2 & = \left( \mathbf{A}_{R_{\lambda_1}} \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}}^\dag \sinh(R_{\lambda_1}) \right)^2\\ & = \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \end{aligned}

Substituting all terms we get:

\begin{aligned} & \cos^2(\varepsilon) \left\{ -\alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right. \right. \\ &\left. \left.+ \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right] \right. \\ & + (\alpha_{\lambda_2}^2 + 1) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right] \\ & \left. - \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right. \\ &\left. \left. + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \right\} \end{aligned}

Now we compute the term with \sin(\varepsilon) \cos(\varepsilon):

- 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right]

We compute (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1}:

\begin{aligned} (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} = & \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right.\\ &\left. + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right] \left( \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} - \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \right) \\ = & \cosh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 \\ & - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \\ & + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \\ & + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} - \sinh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag \end{aligned}

We compute \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2:

\begin{aligned} \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 = & \left( \mathbf{A}_{R_{\lambda_1}}^\dag \cosh(R_{\lambda_1}) - \mathbf{A}_{R_{\lambda_1}} \sinh(R_{\lambda_1}) \right) \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right.\\ &\left. - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \\ = & \cosh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \\ & + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \\ & - \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 \\ & + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \\ & - \sinh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \end{aligned}

We compute \mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}:

\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1} = (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}})

Substituting all terms we get:

\begin{aligned} - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} & \left\{ \left[ \cosh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 \right. \right. \\ & \left. - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} - \sinh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & - \left[ \cosh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \sinh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \\ & \left. - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}}) \right\} \end{aligned}

We can now replace in the original expression:

\begin{aligned} {}_2 \langle \boldsymbol \alpha_\lambda | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \alpha_\lambda \rangle_2 = & \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] \\ = & \sin^2(\varepsilon) \left[ \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \\ & \left. - 2 \alpha_{\lambda_2}^2 \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left.\left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & \cos^2(\varepsilon) \left\{ -\alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right. \right. \\ &\left. \left.+ \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right] \right. \\ & + (\alpha_{\lambda_2}^2 + 1) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right] \\ & \left. - \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right. \\ &\left. \left. + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \right\} \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ \left[ \cosh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 \right. \right. \\ & \left. - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} - \sinh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & - \left[ \cosh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \sinh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \\ & \left. - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}}) \right\} \end{aligned}

We can now compute the expectation of this formula for the state | \mathbf 0, R_{\lambda_1} \rangle.

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & {}_1 \langle \mathbf 0, R_{\lambda_1} | \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 + \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] | \mathbf 0, R_{\lambda_1} \rangle_1 \\ & {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_1 + \mathbf T_2 + \mathbf T_3 | \mathbf 0, R_{\lambda_1} \rangle_1 \\ & {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_1 | \mathbf 0, R_{\lambda_1} \rangle_1 + {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_2 | \mathbf 0, R_{\lambda_1} \rangle_1 + {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_3 | \mathbf 0, R_{\lambda_1} \rangle_1 \end{aligned}

We can compute each term separately.

The first term is:

\begin{aligned} {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_1 | \mathbf 0, R_{\lambda_1} \rangle_1 = & {}_1 \langle \mathbf 0, R_{\lambda_1} | \sin^2(\varepsilon) \left[ \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \\ & \left. - 2 \alpha_{\lambda_2}^2 \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left.\left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right) \right. \\ & \left.+ (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & {}_1 \langle \mathbf 0, R_{\lambda_1} | \sin^2(\varepsilon) \left[ \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 \\ & \left. - 2 \alpha_{\lambda_2}^2 \left( \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right.\\ & \left.\left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)\right. \\ & \left. + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & \sin^2(\varepsilon) \left[ {}_1 \langle \mathbf 0, R_{\lambda_1} | \left( \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - 2 \alpha_{\lambda_2}^2 {}_1 \langle \mathbf 0, R_{\lambda_1} | \left( \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right) | \mathbf 0, R_{\lambda_1} \rangle_1 +\right. \\ & \left. (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf 1 | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) \times 1 - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) \times 1 + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \end{aligned}

The second term is:

\begin{aligned} {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_2 | \mathbf 0, R_{\lambda_1} \rangle_1 = & {}_1 \langle \mathbf 0, R_{\lambda_1} | \cos^2(\varepsilon) \left\{ -\alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right. \right. \\ &\left. \left. - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right] \right. \\ & + (\alpha_{\lambda_2}^2 + 1) \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 + \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \right] \\ & \left. - \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \right. \\ &\left. \left. + \sinh^2(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \right\} | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ & \left. \left. - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ & \left. + \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & + (\alpha_{\lambda_2}^2 + 1) \left[ \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.+ \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & \left. - \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ &\left. - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. \left. + \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \right] \\ = & \cos^2(\varepsilon) \left[ -\alpha_{\lambda_2}^2 \left[ 0 - 0 + 0 \right] \right. \\ & \left. + (\alpha_{\lambda_2}^2 + 1) \left[ 0 - 0 - 0 + \sinh^2(R_{\lambda_1}) \times 1 \right] \right. \\ & \left. + \alpha_{\lambda_2}^2 \left[ \cosh^2(R_{\lambda_1}) \times 1 - 0 - 0 + 0 \right] \right. \\ & \left. - \alpha_{\lambda_2}^2 \left[ 0 - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \times 1 + 0 \right] \right] \\ = & \cos^2(\varepsilon) \left[ 0 + (\alpha_{\lambda_2}^2 + 1) \sinh^2(R_{\lambda_1}) \right. \\ & \left. + \alpha_{\lambda_2}^2 \cosh^2(R_{\lambda_1})\right. \\ & \left. - \alpha_{\lambda_2}^2 \left[ - 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \right] \right] \\ = & \cos^2(\varepsilon) \left[ (\alpha_{\lambda_2}^2 + 1) \sinh^2(R_{\lambda_1}) \right. \\ & \left.+ \alpha_{\lambda_2}^2 \cosh^2(R_{\lambda_1}) \right. \\ & \left.+ 2 \alpha_{\lambda_2}^2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \right] \\ = & \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) \right. \\ & \left.+ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 \cosh^2(R_{\lambda_1})\right. \\ & \left. + 2 \alpha_{\lambda_2}^2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \right] \\ = & \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 (\sinh^2(R_{\lambda_1}) \right. \\ & \left.+ \cosh^2(R_{\lambda_1}) + 2 \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1})) \right] \\ = & \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \right. \\ & \left. \alpha_{\lambda_2}^2 (\cosh(2R_{\lambda_1}) + \sinh(2R_{\lambda_1})) \right] \\ = & \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \end{aligned}

The third term is:

\begin{aligned} {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf T_3 | \mathbf 0, R_{\lambda_1} \rangle_1 = & {}_1 \langle \mathbf 0, R_{\lambda_1} | - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ \left[ \cosh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} \right. \right. \\ & \left. \left. - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 \right. \right. \\ & \left. - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} - \sinh^3(R_{\lambda_1}) (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag \right] \\ & - \left[ \cosh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag \right. \\ & \left. + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 - \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 \right. \\ & \left. + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag - \sinh^3(R_{\lambda_1}) \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \right] \\ & \left. - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}}) \right\} | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ \left[ \cosh^3(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ & \left. \left. - \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag)^3 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \right. \\ & \left. - 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + 2 \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + \sinh^2(R_{\lambda_1}) \cosh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}} | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. - \sinh^3(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}})^2 \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & - \left[ \cosh^3(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- 2 \cosh^2(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + \cosh(R_{\lambda_1}) \sinh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}}^\dag (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- \sinh(R_{\lambda_1}) \cosh^2(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}})^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left. + 2 \sinh(R_{\lambda_1}) \cosh(R_{\lambda_1}) \sinh(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}} \mathbf{A}_{R_{\lambda_1}}^\dag | \mathbf 0, R_{\lambda_1} \rangle_1 \right. \\ & \left.- \sinh^3(R_{\lambda_1}) {}_1 \langle \mathbf 0, R_{\lambda_1} | \mathbf{A}_{R_{\lambda_1}} (\mathbf{A}_{R_{\lambda_1}}^\dag)^2 | \mathbf 0, R_{\lambda_1} \rangle_1 \right] \\ & \left. - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) {}_1 \langle \mathbf 0, R_{\lambda_1} | (\mathbf{A}_{R_{\lambda_1}}^\dag - \mathbf{A}_{R_{\lambda_1}}) | \mathbf 0, R_{\lambda_1} \rangle_1 \right\} \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ \left[ 0 - 0 - 0 + 0 + 0 - 0 \right] \right. \\ & \left.- \left[ 0 - 0 + 0 - 0 + 0 - 0 \right] - \alpha_{\lambda_2}^2 (\cosh(R_{\lambda_1}) + \sinh(R_{\lambda_1})) [0 - 0] \right\} \\ = & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left\{ 0 - 0 - 0 \right\} \\ = & 0 \end{aligned}

Summing all terms:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & {}_1\langle \mathbf 0, R_{\lambda_1} | \sin^2(\varepsilon) \left[ \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - 2 \alpha_{\lambda_2}^2 \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & - \cos^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}\mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] \\ & - 2 i \sin(\varepsilon) \cos(\varepsilon) \alpha_{\lambda_2} \left[ (\mathbf a_{\lambda_1}^\dag)^2 \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1}^\dag (\mathbf a_{\lambda_1})^2 - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1}) \right] | \mathbf 0, R_{\lambda_1} \rangle_1 \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \end{aligned}

We can now compute the variance:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle & = \langle \boldsymbol \Psi_{\text{in}} | \left(\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} \right)^2 | \boldsymbol \Psi_{\text{in}} \rangle - \left(\langle \boldsymbol \Psi_{\text{in}} |\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}| \boldsymbol \Psi_{\text{in}} \rangle\right)^2 \\ = & \left\{\sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \right. \\ &\left. + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right]\right\} \\ & - \left\{\sin(\varepsilon) \left[ \alpha_\lambda^2 - \sinh^2(R_{\lambda_1}) \right]\right\}^2 \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \\ & - \sin^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 - \sinh^2(R_{\lambda_1}) \right]^2 \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + (\alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2) \right] \\ & + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \\ & - \sin^2(\varepsilon) \left[ \alpha_{\lambda_2}^4 - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + \sinh^4(R_{\lambda_1}) \right] \\ = & \sin^2(\varepsilon) \left[ \sinh^4(R_{\lambda_1}) - 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^4 + \alpha_{\lambda_2}^2 \right. \\ & \left. - \alpha_{\lambda_2}^4 + 2 \alpha_{\lambda_2}^2 \sinh^2(R_{\lambda_1}) - \sinh^4(R_{\lambda_1}) \right] \\ & + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \\ = & \sin^2(\varepsilon) \left[ \alpha_{\lambda_2}^2 \right] + \cos^2(\varepsilon) \left[ \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} \right] \\ = & \alpha_{\lambda_2}^2 \sin^2(\varepsilon) + \cos^2(\varepsilon) \sinh^2(R_{\lambda_1}) + \alpha_{\lambda_2}^2 \cos^2(\varepsilon) e^{2R_{\lambda_1}} \\ = & \alpha_{\lambda_2}^2 \left( \sin^2(\varepsilon) + \cos^2(\varepsilon) e^{2R_{\lambda_1}} \right) + \cos^2(\varepsilon) \sinh^2(R_{\lambda_1}) \end{aligned}

So the variance is:

\alpha_{\lambda_2}^2 \left( \sin^2(\varepsilon) + e^{2R_{\lambda_1}} \cos^2(\varepsilon) \right) + \sinh^2(R_{\lambda_1}) \cos^2(\varepsilon)

We can consider the case \varepsilon = 0, for which case we have:

\alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} = e^{2R_{\lambda_1}} \langle \mathbf N_{\lambda_2} \rangle

which is the expected result, a variance which is reduced by the squeezing factor e^{2R_{\lambda_1}} which less than one for 2R_{\lambda_1} negative.

As double confirmation, we can achieve this results in a similar fashion to what done for the vacuum.

With \varepsilon = 0 the expectation of \mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} is null:

\langle \boldsymbol \Psi_{\text{in}} |\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5} | \boldsymbol \Psi_{\text{in}} \rangle = \sin(\varepsilon) \left[ \alpha_\lambda^2 - \sinh^2(R_{\lambda_1}) \right] = 0

we have for a generic |\boldsymbol \Psi_{\text{in}} \rangle:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & {}_1\langle \mathbf 0, R_{\lambda_1} | -\left[ \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} (\alpha_{\lambda_2}^2 + 1) \right. \\ & \left. - \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag) + \alpha_{\lambda_2}^2 (\mathbf a_{\lambda_1})^2 \right] | \mathbf 0, R_\lambda \rangle_1 - 0 \end{aligned}

If the laser beam in in input channel (2) is intense, then \alpha_{\lambda_2}^2 \gg 1 and therefore (\alpha_{\lambda_2}^2 + 1) \approx \alpha_{\lambda_2}^2:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0, R_{\lambda_1} | -\left[ (\mathbf a_{\lambda_1}^\dag)^2 - \mathbf a_{\lambda_1}^\dag \mathbf a_{\lambda_1} - \mathbf a_{\lambda_1} \mathbf a_{\lambda_1}^\dag + (\mathbf a_{\lambda_1})^2 \right] | \mathbf 0, R_\lambda \rangle_1\\ = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0, R_{\lambda_1} | \left( i (\mathbf a_{\lambda_1}^\dag - \mathbf a_{\lambda_1})\right)^2 | \mathbf 0, R_\lambda \rangle_1 \\ = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0, R_{\lambda_1} | \left( \mathbf P_{\lambda_1}\right)^2| \mathbf 0, R_\lambda \rangle_1 \\ \end{aligned}

As we previously computed the variance of the \mathbf P_{\lambda_1} quadrature for a squeezed state here, we have:

\begin{aligned} \langle \boldsymbol \Psi_{\text{in}} |\left(\Delta_{\mathbf N_{\lambda_6} - \mathbf N_{\lambda_5}}\right)^2 | \boldsymbol \Psi_{\text{in}} \rangle = & \alpha_{\lambda_2}^2 {}_1\langle \mathbf 0, R_{\lambda_1} | \left( \mathbf P_{\lambda_1}\right)^2| \mathbf 0, R_\lambda \rangle_1 \\ = & \alpha_{\lambda_2}^2 e^{2R_{\lambda_1}} = e^{2R_{\lambda_1}} \langle \mathbf N_{\lambda_2} \rangle \end{aligned}

which coincide with the analytical result.

The signal to noise ratio:

\text{SNR} = \frac{\langle \mathbf N_{\lambda_5} - \mathbf N_{\lambda_6} \rangle}{\Delta_{\mathbf N_{\lambda_6}-\mathbf N_{\lambda_5}}} = e^{-R_{\lambda_1}} \varepsilon \sqrt{\mathbf N_{\lambda_2}}

is increased by a factor e^{-R_{\lambda_1}} compared to the previous case.

The minimum detectable dephasing for a given signal to noise ratio is reduced by a factor e^{-R_{\lambda_1}} and the sensitivity with a squeezed vacuum is larger than the standard quantum limit.