Moments of inertia

Moments of Inertia
Moments of Inertia for Common Shapes

Mass Moments of Inertia

Two Dimensional Shapes

Rectangular Plate

Circular Plate

Triangular Plate

Three Dimensional Shapes

Cuboid

Cylinder

Two dimensional shapes

Rectangular plate

Rectangular plate

The mass moment of inertia tensor is:

\mathbf{I} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix} = \frac{m}{12}\begin{bmatrix} w^2 & 0 & 0 \\ 0 & h^2 & 0 \\ 0 & 0 & w^2 + h^2 \end{bmatrix}

It is the same as the cuboid here, setting d = 0.

Circular plate

Circular plate

The mass moment of inertia tensor is:

\mathbf{I} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix} = \frac{1}{4}m r^2 \begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}

It is the same as the cylinder here, setting h = 0.

Triangular plate

Triangular plate

The mass moment of inertia tensor with respect the origin is:

\mathbf{I} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix} = \frac{mh^2}{18} \begin{bmatrix} 3 & -2 & 0 \\ -2 & 9 & 0 \\ 0 & 0 & 12 \end{bmatrix}

The mass moment of inertia tensor with respect the center of mass is:

\mathbf{I} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix} = \frac{mh^2}{36} \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}

Let’s compute quantities that will be useful in the computation later. The area of the triangle is A = \frac{h^2}{2}, the mass m = \rho\,A= \rho \frac{h^2}{2}.

For a continuous figure with area A and density \rho(\mathbf{r}), the centroid is given by:

\mathbf{C} = \frac{1}{m} \int_A \rho(\mathbf{r}) \mathbf{r} \mathrm dA

where m=\int_A \rho(\mathbf{r}) \mathrm dA is the total mass. In the case of uniform density, like the current example, \rho(\mathbf{r})=\rho_0 the equation becomes:

\mathbf{C} = \frac{1}{A} \int_A \mathbf{r} \mathrm dA

For the x direction the location of the centroid is (y = f(x) = x):

\begin{aligned} x_c & = \frac{2}{h^2}\int_0^h \int_0^{f(x)} x \mathrm dx\,\mathrm dy \\ & = \frac{2}{h^2}\int_0^h x \left(\int_0^{f(x)} \mathrm dy\right)\mathrm dx \\ & = \frac{2}{h^2}\int_0^h x \left( y \bigg|_0^{f(x)} \right)\mathrm dx \\ & = \frac{2}{h^2}\int_0^h x \cdot x \mathrm dx \\ & = \frac{2}{h^2}\int_0^h x^2 \mathrm dx \\ & = \frac{2}{h^2} \frac{x^3}{3}\bigg|_0^h \\ & = \frac{2}{h^2} \frac{h^3}{3}\bigg|_0^h \\ & = \frac{2}{3}h \end{aligned}

For the y direction the location of the centroid is:

\begin{aligned} y_c & = \frac{2}{h^2}\int_0^h \int_0^{f(x)} y \mathrm dx\,\mathrm dy \\ & = \frac{2}{h^2}\int_0^h \left(\int_0^{f(x)} y \mathrm dy\right)\mathrm dx \\ & = \frac{2}{h^2}\int_0^h \left( \frac{y^2}{3} \bigg|_0^{f(x)} \right)\mathrm dx \\ & = \frac{2}{h^2}\int_0^h \frac{x^2}{3} \mathrm dx \\ & = \frac{2}{h^2} \frac{x^3}{6}\bigg|_0^h \\ & = \frac{2}{h^2} \frac{h^3}{6}\bigg|_0^h \\ & = \frac{1}{3}h \end{aligned}

So the location of the centroid (which is also the center of mass) is:

(x_c, y_c) = \left( \frac{2}{3}h, \frac{1}{3}h\right)

I_{xx}

I_{xx} = \iint_A y^2 \rho \, \mathrm{d}A

It is easier to compute the moment of inertia I_{xx}^0 with respect to the x-axis passing through the origin is:

\begin{aligned} I_{xx}^0 & = \iint_R y^2 \, \rho \, \mathrm{d}A = \rho \int_{0}^{h} \int_{0}^{x} y^2 \, \mathrm{d}y \, \mathrm{d}x \\ & = \rho \int_{0}^{h} \frac{x^3}{3} \, \mathrm{d}x = \rho \frac{h^4}{12} \\ & = \frac{2m}{h^2} \frac{h^4}{12} = \frac{mh^2}{6} \end{aligned}

Using the parallel axis theorem I_{xx}^0 = I_{xx} + m \bar{y}^2, the moment of inertia I_{xx} with respect to the center of mass is

\begin{aligned} I_{xx} & = I_{xx}^0 - m \bar{y}^2 = \frac{mh^2}{6} - m \left(\frac{h}{3}\right)^2 \\ & = \frac{mh^2}{6} - \frac{mh^2}{9} = mh^2 \left(\frac{1}{6} - \frac{1}{9}\right) \\ & = mh^2 \left(\frac{3-2}{18}\right) = \frac{mh^2}{18} \end{aligned}

I_{yy}

I_{xx} = \iint_A x^2 \rho \, \mathrm{d}A

It is easier to compute the moment of inertia I_{yy}^0 with respect to the y-axis passing through the origin is:

\begin{aligned} I_{yy}^0 & = \iint_R x^2 \, \rho \, \mathrm{d}A = \rho \int_{0}^{h} \int_{0}^{x} x^2 \, \mathrm{d}y \, \mathrm{d}x \\ & = \rho \int_{0}^{h} x^2 [y]_{0}^{x} \, \mathrm{d}x = \rho \int_{0}^{h} x^3 \, \mathrm{d}x \\ & = \rho \frac{x^4}{4}\bigg|_{0}^{h} = \rho \frac{h^4}{4} \end{aligned}

Substituting \rho = \frac{2m}{h^2}, we get:

I_{yy}^0 = \frac{2m}{h^2} \frac{h^4}{4} = \frac{mh^2}{2}

Using the parallel axis theorem I_{yy}^0 = I_{yy} + m \bar{x}^2, the moment of inertia I_{yy} with respect to the center of mass is

\begin{aligned} I_{yy} & = I_{yy}^0 - m \bar{x}^2 = \frac{mh^2}{2} - m \left(\frac{2h}{3}\right)^2 \\ & = \frac{mh^2}{2} - m \frac{4h^2}{9} = mh^2 \left(\frac{1}{2} - \frac{4}{9}\right) \\ & = mh^2 \left(\frac{9-8}{18}\right) = \frac{mh^2}{18} \end{aligned}

I_{zz}

I_{xx} = \iint_A (x^2 + y^2) \rho \, \mathrm{d}A

It is easier to compute the moment of inertia I_{zz}^0 with respect to the z-axis passing through the origin is

I_{zz}^0 = \iint_R (x^2 + y^2) \, \rho \, \mathrm{d}A = I_{xx}^0 + I_{yy}^0

We have already computed I_{xx}^0 = \frac{mh^2}{6} and I_{yy}^0 = \frac{mh^2}{2}.

\begin{aligned} I_{zz}^0 & = I_{xx}^0 + I_{yy}^0 = \frac{mh^2}{6} + \frac{mh^2}{2} \\ & = mh^2 \left(\frac{1}{6} + \frac{1}{2}\right) = mh^2 \left(\frac{1+3}{6}\right) \\ & = \frac{4mh^2}{6} = \frac{2mh^2}{3} \end{aligned}

Using the parallel axis theorem I_{zz}^0 = I_{zz} + m (\bar{x}^2 + \bar{y}^2), the moment of inertia I_{zz} with respect to the center of mass is:

\begin{aligned} I_{zz} & = I_{zz}^0 - m (\bar{x}^2 + \bar{y}^2) = \frac{2mh^2}{3} - m \left(\left(\frac{2h}{3}\right)^2 + \left(\frac{h}{3}\right)^2\right) \\ & = \frac{2mh^2}{3} - m \left(\frac{4h^2}{9} + \frac{h^2}{9}\right) = \frac{2mh^2}{3} - m \frac{5h^2}{9} \\ & = mh^2 \left(\frac{2}{3} - \frac{5}{9}\right) = mh^2 \left(\frac{6-5}{9}\right) = \frac{mh^2}{9} \end{aligned}

I_{xy}

I_{xy} = -\iint_A (xy) \rho \, \mathrm{d}A

It is easier to compute the product of inertia with respect to the origin:

\begin{aligned} I_{xy}^0 & = -\iint_R xy \, \rho \, \mathrm{d}A \\ & = -\rho \int_{0}^{h} \int_{0}^{x} xy \, \mathrm{d}y \, \mathrm{d}x \end{aligned}

First, integrate with respect to y:

\int_{0}^{x} xy \, \mathrm{d}y = x \frac{y^2}{2} \bigg|_{0}^{x} = \frac{x^3}{2}

Now, integrate with respect to x:

\begin{aligned} I_{xy}^0 & = -\rho \int_{0}^{h} \frac{x^3}{2} \, \mathrm{d}x \\ & = -\frac{\rho}{2} \frac{x^4}{4} \bigg|_{0}^{h} = -\frac{\rho h^4}{8} \end{aligned}

Substituting \rho = \frac{2m}{h^2}:

I_{xy}^0 = -\frac{2m}{h^2} \frac{h^4}{8} = -\frac{mh^2}{4}

Using the parallel axis theorem I_{xy} = I_{xy}^0 + m \bar{x} \bar{y}:

\begin{aligned} I_{xy} & = -\frac{mh^2}{4} + m \left(\frac{2h}{3}\right) \left(\frac{h}{3}\right) \\ & = -\frac{mh^2}{4} + \frac{2mh^2}{9} = mh^2 \left( -\frac{1}{4} + \frac{2}{9} \right) \\ & = mh^2 \left( \frac{-9 + 8}{36} \right) = -\frac{mh^2}{36} \end{aligned}

I_{yx}

Since the inertia tensor is symmetric,I_{yx} = I_{xy}:

I_{yx} = -\frac{mh^2}{36}

I_{xz}

I_{xx} = -\iint_A xz \rho \, \mathrm{d}A

Since the triangle lies in the xy plane, z=0 and therefore all the products of inertia with respect to z are zero:

I_{xz} = I_{yz} = I_{zx} = I_{zy} = 0

Three dimensional shapes

Cuboid

Cuboid

The mass moment of inertia tensor is:

\mathbf{I} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix} = \frac{m}{12}\begin{bmatrix} w^2 + d^2 & 0 & 0 \\ 0 & d^2 + h^2 & 0 \\ 0 & 0 & w^2 + h^2 \end{bmatrix}

The mass m is distributed uniformly, so the density is:

\rho = \frac{m}{V} =\frac{m}{h \cdot w \cdot d}

I_{xx}

I_{xx} = \rho \int_{-h/2}^{h/2} \int_{-d/2}^{d/2} \int_{-w/2}^{w/2} (y^2 + z^2) \, \mathrm dx \, \mathrm dy \, \mathrm dz

Since y^2 + z^2 does not depend on x, the x-integral evaluates to the height of the cuboid (h):

\begin{aligned} I_{xx} & = \rho \cdot h \int_{-d/2}^{d/2} \int_{-w/2}^{w/2} (y^2 + z^2) \, \mathrm dy \, \mathrm dz \\ & = \rho \cdot h \left[ \int_{-d/2}^{d/2} y^2 \, \mathrm dy \int_{-w/2}^{w/2} dz + \int_{-w/2}^{w/2} z^2 \, \mathrm dz \int_{-d/2}^{d/2} dy \right] \\ & = \rho \cdot h \left\{\left[ \frac{y^3}{3} \right]_{-d/2}^{d/2} \bigg[ z \bigg]_{-w/2}^{w/2} + \left[ \frac{z^3}{3} \right]_{-w/2}^{w/2} \bigg[ y \bigg]_{-d/2}^{d/2} \right\} \\ & = \rho \cdot h \left\{\frac{1}{3} \left[\left(\frac{d}{2}\right)^3 - \left(-\frac{d}{2}\right)^3\right] \, w + \frac{1}{3} \left[\left(\frac{w}{2}\right)^3 - \left(-\frac{w}{2}\right)^3\right] \, d \right\} \\ & = \rho \cdot h \left(\frac{d^3}{12}w + \frac{w^3}{12}d \right) \\ & = \rho \cdot (h \, d\, w) \left( \frac{d^2 + w^2}{12}\right) \\ & = m \left( \frac{d^2 + w^2}{12}\right) \end{aligned}

I_{yy}

I_{yy} = \rho \int_{-h/2}^{h/2} \int_{-w/2}^{w/2} \int_{-d/2}^{d/2} (x^2 + z^2) \, \mathrm dx \, \mathrm dy \, \mathrm dz

Since x^2 + z^2 does not depend on y, the y-integral evaluates to the width of the cuboid (w):

\begin{aligned} I_{yy} & = \rho \cdot w \int_{-h/2}^{h/2} \int_{-d/2}^{d/2} (x^2 + z^2) \, \mathrm dx \, \mathrm dz \\ & = \rho \cdot w \left[ \int_{-h/2}^{h/2} x^2 \, \mathrm dx \int_{-d/2}^{d/2} dz + \int_{-d/2}^{d/2} z^2 \, \mathrm dz \int_{-h/2}^{h/2} dx \right] \\ & = \rho \cdot w \left\{\left[ \frac{x^3}{3} \right]_{-h/2}^{h/2} \bigg[ z \bigg]_{-d/2}^{d/2} + \left[ \frac{z^3}{3} \right]_{-d/2}^{d/2} \bigg[ x \bigg]_{-h/2}^{h/2} \right\} \\ & = \rho \cdot w \left\{\frac{1}{3} \left[\left(\frac{h}{2}\right)^3 - \left(-\frac{h}{2}\right)^3\right] \, d + \frac{1}{3} \left[\left(\frac{d}{2}\right)^3 - \left(-\frac{d}{2}\right)^3\right] \, h \right\} \\ & = \rho \cdot w \left(\frac{h^3}{12}d + \frac{d^3}{12}h \right) \\ & = \rho \cdot (h \, w\, d) \left( \frac{h^2 + d^2}{12}\right) \\ & = m \left( \frac{h^2 + d^2}{12}\right) \end{aligned}

I_{zz}

I_{zz} = \rho \int_{-h/2}^{h/2} \int_{-w/2}^{w/2} \int_{-d/2}^{d/2} (x^2 + y^2) \, \mathrm dx \, \mathrm dy \, \mathrm dz

Since x^2 + y^2 does not depend on z, the z-integral evaluates to the depth of the cuboid (d):

\begin{aligned} I_{zz} & = \rho \cdot d \int_{-h/2}^{h/2} \int_{-w/2}^{w/2} (x^2 + y^2) \, \mathrm dx \, \mathrm dy \\ & = \rho \cdot d \left[ \int_{-h/2}^{h/2} x^2 \, \mathrm dx \int_{-w/2}^{w/2} dy + \int_{-w/2}^{w/2} y^2 \, \mathrm dy \int_{-h/2}^{h/2} dx \right] \\ & = \rho \cdot d \left\{\left[ \frac{x^3}{3} \right]_{-h/2}^{h/2} \bigg[ y \bigg]_{-w/2}^{w/2} + \left[ \frac{y^3}{3} \right]_{-w/2}^{w/2} \bigg[ x \bigg]_{-h/2}^{h/2} \right\} \\ & = \rho \cdot d \left\{\frac{1}{3} \left[\left(\frac{h}{2}\right)^3 - \left(-\frac{h}{2}\right)^3\right] \, w + \frac{1}{3} \left[\left(\frac{w}{2}\right)^3 - \left(-\frac{w}{2}\right)^3\right] \, h \right\} \\ & = \rho \cdot d \left(\frac{h^3}{12}w + \frac{w^3}{12}h \right) \\ & = \rho \cdot (h \, w\, d) \left( \frac{h^2 + w^2}{12}\right) \\ & = m \left( \frac{h^2 + w^2}{12}\right) \end{aligned}

I_{xy}

I_{xy} = \rho \int_{-h/2}^{h/2} \int_{-w/2}^{w/2} \int_{-d/2}^{d/2} (x y) \, \mathrm dx \, \mathrm dy \, \mathrm dz

Since x y does not depend on z, the z-integral evaluates to the depth of the cuboid (d):

\begin{aligned} I_{xy} & = \rho \cdot d \int_{-h/2}^{h/2} \int_{-w/2}^{w/2} (x y) \, \mathrm dx \, \mathrm dy \\ & = \rho \cdot d \left[ \int_{-h/2}^{h/2} x \, \mathrm dx \int_{-w/2}^{w/2} y \, \mathrm dy \right] \\ & = \rho \cdot d \left\{\left[ \frac{x^2}{2} \right]_{-h/2}^{h/2} \cdot \left[ \frac{y^2}{2} \right]_{-w/2}^{w/2} \right\} \\ & = \rho \cdot d \left\{\frac{1}{4} \left[\left(\frac{h}{2}\right)^2 - \left(-\frac{h}{2}\right)^2\right] \cdot \frac{1}{4} \left[\left(\frac{w}{2}\right)^2 - \left(-\frac{w}{2}\right)^2\right] \right\} \\ & = \rho \cdot d \cdot 0 \cdot 0 \\ & = 0 \end{aligned}

I_{xz}

I_{xz} = \rho \int_{-h/2}^{h/2} \int_{-w/2}^{w/2} \int_{-d/2}^{d/2} (x z) \, \mathrm dx \, \mathrm dy \, \mathrm dz

Since x z does not depend on y, the y-integral evaluates to the weight of the prism (w):

\begin{aligned} I_{xz} & = \rho \cdot w \int_{-h/2}^{h/2} \int_{-d/2}^{d/2} (x z) \, \mathrm dx \, \mathrm dz \\ & = \rho \cdot w \left[ \int_{-h/2}^{h/2} x \, \mathrm dx \int_{-d/2}^{d/2} z \, \mathrm dz \right] \\ & = \rho \cdot w \left\{\left[ \frac{x^2}{2} \right]_{-h/2}^{h/2} \cdot \left[ \frac{z^2}{2} \right]_{-d/2}^{d/2} \right\} \\ & = \rho \cdot w \left\{\frac{1}{4} \left[\left(\frac{h}{2}\right)^2 - \left(-\frac{h}{2}\right)^2\right] \cdot \frac{1}{4} \left[\left(\frac{d}{2}\right)^2 - \left(-\frac{d}{2}\right)^2\right] \right\} \\ & = \rho \cdot w \cdot 0 \cdot 0 \\ & = 0 \end{aligned}

I_{yz}

I_{yz} = \rho \int_{-h/2}^{h/2} \int_{-w/2}^{w/2} \int_{-d/2}^{d/2} (y z) \, \mathrm dx \, \mathrm dy \, \mathrm dz

Since y z does not depend on x, the x-integral evaluates to the height of the prism (h):

\begin{aligned} I_{yz} & = \rho \cdot h \int_{-w/2}^{w/2} \int_{-d/2}^{d/2} (y z) \, \mathrm dy \, \mathrm dz \\ & = \rho \cdot h \left[ \int_{-w/2}^{w/2} y \, \mathrm dy \int_{-d/2}^{d/2} z \, \mathrm dz \right] \\ & = \rho \cdot h \left\{\left[ \frac{y^2}{2} \right]_{-w/2}^{w/2} \cdot \left[ \frac{z^2}{2} \right]_{-d/2}^{d/2} \right\} \\ & = \rho \cdot h \left\{\frac{1}{4} \left[\left(\frac{w}{2}\right)^2 - \left(-\frac{w}{2}\right)^2\right] \cdot \frac{1}{4} \left[\left(\frac{d}{2}\right)^2 - \left(-\frac{d}{2}\right)^2\right] \right\} \\ & = \rho \cdot h \cdot 0 \cdot 0 \\ & = 0 \end{aligned}

Cylinder

Cylinder

The mass moment of inertia tensor is:

\mathbf{I} = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{xy} & I_{yy} & I_{yz} \\ I_{xz} & I_{yz} & I_{zz} \end{bmatrix} = \begin{bmatrix} \frac{1}{12}m \left(3r^2 + h^2 \right) & 0 & 0 \\ 0 & \frac{1}{12}m \left(3r^2 + h^2 \right) & 0 \\ 0 & 0 & \frac{1}{2}m r^2 \end{bmatrix}

The mass m is distributed uniformly, so the density is:

\rho = \frac{m}{V} = \frac{m}{\pi r^2 h}

I_{xx}

I_{xx} = \rho \int_{-h/2}^{h/2} \int_{0}^{2\pi} \int_{0}^{r} (y^2 + z^2) \, \rho' \, \mathrm d\rho' \, \mathrm d\phi \, \mathrm dz

We know that y = \rho' \sin\phi, so y^2 = \rho'^2 \sin^2\phi.

I_{xx} = \rho \int_{-h/2}^{h/2} \int_{0}^{2\pi} \int_{0}^{r} (\rho'^3 \sin^2\phi + z^2 \rho') \, \mathrm d\rho' \, \mathrm d\phi \, \mathrm dz

The integral can be factorized as:

I_{xx} = \rho \left[ \int_{-h/2}^{h/2} \mathrm dz \int_{0}^{2\pi} \sin^2\phi \, \mathrm d\phi \int_{0}^{r} \rho'^3 \, \mathrm d\rho' + \int_{-h/2}^{h/2} z^2 \, \mathrm dz \int_{0}^{2\pi} \mathrm d\phi \int_{0}^{r} \rho' \, \mathrm d\rho' \right]

Computing the various contributions:

\begin{aligned} & \int_{0}^{r} \rho'^3 \, \mathrm d\rho' = \frac{r^4}{4} \\ & \int_{0}^{2\pi} \sin^2\phi \, \mathrm d\phi = \pi \\ & \int_{-h/2}^{h/2} \mathrm dz = h \\ & \int_{-h/2}^{h/2} z^2 \, \mathrm dz = \frac{h^3}{12} \\ & \int_{0}^{2\pi} \mathrm d\phi = 2\pi \\ & \int_{0}^{r} \rho' \, \mathrm d\rho' = \frac{r^2}{2} \end{aligned}

Substituting:

\begin{aligned} I_{xx} & = \rho \left( h \cdot \pi \cdot \frac{r^4}{4} + \frac{h^3}{12} \cdot 2\pi \cdot \frac{r^2}{2} \right) = \rho \left( \frac{\pi h r^4}{4} + \frac{\pi h^3 r^2}{12} \right) \\ & = \frac{m}{\pi r^2 h} \left( \frac{\pi h r^4}{4} + \frac{\pi h^3 r^2}{12} \right) = \frac{1}{12}m \left( 3r^2 + h^2 \right) \end{aligned}

I_{yy}

Due to the symmetry of the cylinder about the z-axis (which is the axis of the cylinder), I_{yy} is the same as I_{xx}. The calculation would be analogous, just replacing y^2 with x^2 in the integrand, and due to the cylindrical symmetry in the xy plane, the result is identical. Therefore, it is unnecessary to compute I_{yy} explicitly:

I_{yy} = I_{xx} = \frac{1}{12}m \left( 3r^2 + h^2 \right)

I_{zz}

I_{zz} = \rho \int_V (x^2 + y^2) \, \mathrm dV

In cylindrical coordinates, x^2 + y^2 = \rho'^2 and \mathrm dV = \rho' \, \mathrm d\rho' \, \mathrm d\phi \, \mathrm dz.

The integral becomes:

I_{zz} = \rho \int_{-h/2}^{h/2} \int_{0}^{2\pi} \int_{0}^{r} (\rho'^2) \, \rho' \, \mathrm d\rho' \, \mathrm d\phi \, \mathrm dz

The integral can be factorized as:

I_{zz} = \rho \int_{-h/2}^{h/2} \mathrm dz \int_{0}^{2\pi} \mathrm d\phi \int_{0}^{r} \rho'^3 \, \mathrm d\rho'

Computing the various contributions:

\begin{aligned} & \int_{-h/2}^{h/2} \mathrm dz = h \\ & \int_{0}^{2\pi} \mathrm d\phi = 2\pi \\ & \int_{0}^{r} \rho'^3 \, \mathrm d\rho' = \left[ \frac{\rho'^4}{4} \right]_{0}^{r} = \frac{r^4}{4} \end{aligned}

Substituting:

\begin{aligned} I_{zz} & = \rho \cdot h \cdot 2\pi \cdot \frac{r^4}{4} = \rho \frac{\pi h r^4}{2}\\ & = \frac{m}{\pi r^2 h} \frac{\pi h r^4}{2} = \frac{m r^2}{2} \end{aligned}

I_{xy}

I_{xy} = - \rho \int_V x y \, \mathrm dV

In cylindrical coordinates, x = \rho' \cos\phi, y = \rho' \sin\phi, \mathrm dV = \rho' \, \mathrm d\rho' \, \mathrm d\phi \, \mathrm dz.

I_{xy} = - \rho \int_{-h/2}^{h/2} \int_{0}^{2\pi} \int_{0}^{r} (\rho' \cos\phi) (\rho' \sin\phi) \, \rho' \, \mathrm d\rho' \, \mathrm d\phi \, \mathrm dz

The integral can be factorized as:

I_{xy} = - \rho \int_{-h/2}^{h/2} \mathrm dz \int_{0}^{2\pi} \cos\phi \sin\phi \, \mathrm d\phi \int_{0}^{r} \rho'^3 \, \mathrm d\rho'

Computing the middle integral:

\begin{aligned} \int_{0}^{2\pi} \cos\phi \sin\phi \, \mathrm d\phi & = \frac{1}{2} \int_{0}^{2\pi} \sin(2\phi) \, \mathrm d\phi \\ & = \frac{1}{2} \left[ -\frac{1}{2} \cos(2\phi) \right]_{0}^{2\pi} \\ & = -\frac{1}{4} (\cos(4\pi) - \cos(0)) = 0 \end{aligned}

As one of the integral is null, the product is null and therefore:

I_{xy} = 0

I_{xz}

I_{xz} = - \rho \int_V x z \, \mathrm dV

In cylindrical coordinates, x = \rho' \cos\phi, z = z, and \mathrm dV = \rho' \, \mathrm d\rho' \, \mathrm d\phi \, \mathrm dz.

I_{xz} = - \rho \int_{-h/2}^{h/2} \int_{0}^{2\pi} \int_{0}^{r} (\rho' \cos\phi) z \, \rho' \, \mathrm d\rho' \, \mathrm d\phi \, \mathrm dz

The integral can be factorized as:

I_{xz} = - \rho \left( \int_{-h/2}^{h/2} z \, \mathrm dz \right) \left( \int_{0}^{2\pi} \cos\phi \, \mathrm d\phi \right) \left( \int_{0}^{r} \rho'^2 \, \mathrm d\rho' \right)

Computing the first integral:

\begin{aligned} \int_{-h/2}^{h/2} z \, \mathrm dz & = \left[ \frac{z^2}{2} \right]_{-h/2}^{h/2} = \frac{1}{2} \left( \left(\frac{h}{2}\right)^2 - \left(-\frac{h}{2}\right)^2 \right) \\ & = \frac{1}{2} \left( \frac{h^2}{4} - \frac{h^2}{4} \right) = 0 \end{aligned}

As one of the integral is null, the product is null and therefore:

I_{xz} = 0

I_{yz}

Due to the symmetry of the cylinder about the z-axis (which is the axis of the cylinder), I_{yz} is the same as I_{xz}:

I_{yz} = I_{xz} = 0

Go to the top of the page